Characterization and Computation of Matrices of Maximal Trace Over Rotations

IF 0.5 Q4 PHYSICS, MATHEMATICAL
J. Bernal, J. Lawrence
{"title":"Characterization and Computation of Matrices of Maximal Trace Over Rotations","authors":"J. Bernal, J. Lawrence","doi":"10.7546/jgsp-53-2019-21-53","DOIUrl":null,"url":null,"abstract":"The constrained orthogonal Procrustes problem is the least-squares problem that calls for a rotation matrix that optimally aligns two corresponding sets of points in d-dimensional Euclidean space. This problem generalizes to the so-called Wahba's problem which is the same problem with nonnegative weights. Given a dxd matrix M, solutions to these problems are intimately related to the problem of finding a dxd rotation matrix U that maximizes the trace of UM, i.e., that makes UM a matrix of maximal trace over rotations, and it is well known this can be achieved with a method based on the computation of the singular value decomposition (SVD) of M. As the main goal of this paper, we characterize dxd matrices of maximal trace over rotation matrices in terms of their eigenvalues, and for d = 2, 3, we show how this characterization can be used to determine whether a matrix is of maximal trace over rotation matrices. Finally, although depending only slightly on the characterization, as a secondary goal of the paper, for d = 2, 3, we identify alternative ways, other than the SVD, of obtaining solutions to the aforementioned problems.","PeriodicalId":43078,"journal":{"name":"Journal of Geometry and Symmetry in Physics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Symmetry in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/jgsp-53-2019-21-53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 4

Abstract

The constrained orthogonal Procrustes problem is the least-squares problem that calls for a rotation matrix that optimally aligns two corresponding sets of points in d-dimensional Euclidean space. This problem generalizes to the so-called Wahba's problem which is the same problem with nonnegative weights. Given a dxd matrix M, solutions to these problems are intimately related to the problem of finding a dxd rotation matrix U that maximizes the trace of UM, i.e., that makes UM a matrix of maximal trace over rotations, and it is well known this can be achieved with a method based on the computation of the singular value decomposition (SVD) of M. As the main goal of this paper, we characterize dxd matrices of maximal trace over rotation matrices in terms of their eigenvalues, and for d = 2, 3, we show how this characterization can be used to determine whether a matrix is of maximal trace over rotation matrices. Finally, although depending only slightly on the characterization, as a secondary goal of the paper, for d = 2, 3, we identify alternative ways, other than the SVD, of obtaining solutions to the aforementioned problems.
旋转上最大迹矩阵的刻画与计算
约束正交Procrustes问题是一个最小二乘问题,它要求一个旋转矩阵在d维欧几里德空间中最优地对齐两个对应的点集。这个问题可以推广到所谓的Wahba问题,这是一个非负权的问题。dxd矩阵M,解决这些问题是密切相关的问题找到一个最大化的dxd旋转矩阵U的痕迹,也就是说,这使得一个矩阵的最大跟踪旋转,这是众所周知的方法可以实现基于奇异值分解的计算(计算)的M作为本文的主要目标,我们描述dxd矩阵的最大跟踪旋转矩阵的特征值,和d = 2, 3,我们展示了如何使用这个表征来确定一个矩阵在旋转矩阵上是否具有最大迹。最后,尽管仅略微依赖于表征,作为本文的次要目标,对于d = 2,3,我们确定了除SVD之外的其他方法,以获得上述问题的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
25.00%
发文量
3
期刊介绍: The Journal of Geometry and Symmetry in Physics is a fully-refereed, independent international journal. It aims to facilitate the rapid dissemination, at low cost, of original research articles reporting interesting and potentially important ideas, and invited review articles providing background, perspectives, and useful sources of reference material. In addition to such contributions, the journal welcomes extended versions of talks in the area of geometry of classical and quantum systems delivered at the annual conferences on Geometry, Integrability and Quantization in Bulgaria. An overall idea is to provide a forum for an exchange of information, ideas and inspiration and further development of the international collaboration. The potential authors are kindly invited to submit their papers for consideraion in this Journal either to one of the Associate Editors listed below or to someone of the Editors of the Proceedings series whose expertise covers the research topic, and with whom the author can communicate effectively, or directly to the JGSP Editorial Office at the address given below. More details regarding submission of papers can be found by clicking on "Notes for Authors" button above. The publication program foresees four quarterly issues per year of approximately 128 pages each.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信