A. Fitriadhy, N. A. Adam, Izzati Pison, M. A. A Rahman, M. A. Musa, M. H. Mohd
{"title":"CFD investigation into resistance characteristics of a pusher-barge system in calm water","authors":"A. Fitriadhy, N. A. Adam, Izzati Pison, M. A. A Rahman, M. A. Musa, M. H. Mohd","doi":"10.3329/jname.v18i2.52593","DOIUrl":null,"url":null,"abstract":"Prediction of ship’s total resistance of a pusher-barge system has become enormous complexity involving nonlinear-hydrodynamic flows behaviour along their hull forms. Both of empirical and simplified numerical solutions may still lead into inaccurate results due to presence of nonlinear characteristics of the pressure and viscous resistances. The use of a more sophisticated method would obviously necessitate to solve the above problem. This paper presents a Computational Fluid Dynamics (CFD) approach to predict the total ship’s resistance of a pusher-barge system at various barge’s configurations. To achieve such objective, four different configurations of the barge models incorporated with various Froude numbers have been taken into account in the computational simulation. In general, the results revealed that the increase of Froude number (Fr = 0.182 to 0.312) was proportional to the magnitude of RT, RP and RV. Regardless of the various Froude number, the pusher-barge system with a 13BP configuration provides the highest resistance compared to the 12BP and 11BP. In addition, the arrangement of barges in the longitudinal (12BP) and lateral (21BP) configurations produced a significant effect with increases in RT, RP and RV values of 110%, 167.5% and 77.6%, respectively. The possible reason for this is that the increase of the total wetted surface area for 21BP has produced to a proportionally higher amount of the pressure and viscous resistance. Overall study, the numerical results were presented and analysed based on few aspects involved the total resistance and resistance coefficient in terms of pressure and viscous resistance of the pusher-barge system. This analysis provides very valuable information on choosing the most reliable arrangement of pusher-barge system. This analysis provides very valuable information on choosing the most reliable arrangement of pusher-barge system","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v18i2.52593","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Prediction of ship’s total resistance of a pusher-barge system has become enormous complexity involving nonlinear-hydrodynamic flows behaviour along their hull forms. Both of empirical and simplified numerical solutions may still lead into inaccurate results due to presence of nonlinear characteristics of the pressure and viscous resistances. The use of a more sophisticated method would obviously necessitate to solve the above problem. This paper presents a Computational Fluid Dynamics (CFD) approach to predict the total ship’s resistance of a pusher-barge system at various barge’s configurations. To achieve such objective, four different configurations of the barge models incorporated with various Froude numbers have been taken into account in the computational simulation. In general, the results revealed that the increase of Froude number (Fr = 0.182 to 0.312) was proportional to the magnitude of RT, RP and RV. Regardless of the various Froude number, the pusher-barge system with a 13BP configuration provides the highest resistance compared to the 12BP and 11BP. In addition, the arrangement of barges in the longitudinal (12BP) and lateral (21BP) configurations produced a significant effect with increases in RT, RP and RV values of 110%, 167.5% and 77.6%, respectively. The possible reason for this is that the increase of the total wetted surface area for 21BP has produced to a proportionally higher amount of the pressure and viscous resistance. Overall study, the numerical results were presented and analysed based on few aspects involved the total resistance and resistance coefficient in terms of pressure and viscous resistance of the pusher-barge system. This analysis provides very valuable information on choosing the most reliable arrangement of pusher-barge system. This analysis provides very valuable information on choosing the most reliable arrangement of pusher-barge system
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.