Rigidity results for automorphisms of Hardy--Toeplitz C∗-algebras

IF 0.7 4区 数学 Q2 MATHEMATICS
A. Chirvasitu
{"title":"Rigidity results for automorphisms of Hardy--Toeplitz C∗-algebras","authors":"A. Chirvasitu","doi":"10.7900/jot.2020sep17.2307","DOIUrl":null,"url":null,"abstract":"We prove a number of results on the automorphisms and isomorphisms between Hardy--Toeplitz algebras T(D) associated to bounded symmetric domains D: that the stable isomorphism class of T(D) determines D (even when it is reducible), that for reducible domains D=D1×⋯×Ds the automorphisms of the Shilov boundary ˇS(D) induced by those of T(D) permute the Shilov boundaries ˇS(Di), and that by contrast to arbitrary solvable algebras, automorphisms of T(D) that are trivial on their character spaces ˇS(D) are trivial on the entire spectrum ˆT(D).","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2020sep17.2307","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We prove a number of results on the automorphisms and isomorphisms between Hardy--Toeplitz algebras T(D) associated to bounded symmetric domains D: that the stable isomorphism class of T(D) determines D (even when it is reducible), that for reducible domains D=D1×⋯×Ds the automorphisms of the Shilov boundary ˇS(D) induced by those of T(D) permute the Shilov boundaries ˇS(Di), and that by contrast to arbitrary solvable algebras, automorphisms of T(D) that are trivial on their character spaces ˇS(D) are trivial on the entire spectrum ˆT(D).
Hardy—Toeplitz C * -代数自同构的刚性结果
我们证明了与有界对称域D相关的Hardy—Toeplitz代数T(D)之间的自同构和同构的一些结果:T(D)的稳定同构类决定了D(即使当它是可约的),对于可约域D=D1×⋯×Ds由T(D)的自同构引起的希洛夫边界(D)的自同构置换了希洛夫边界(Di),并且与任意可解代数相比,在其特征空间(D)上平凡的T(D)的自同构在整个谱上平凡的T(D)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信