{"title":"Efficient learning of robust quadruped bounding using pretrained neural networks","authors":"Zhicheng Wang, Anqiao Li, Yixiao Zheng, Anhuan Xie, Zhibin Li, Jun Wu, Qiuguo Zhu","doi":"10.1049/csy2.12062","DOIUrl":null,"url":null,"abstract":"<p>Bounding is one of the important gaits in quadrupedal locomotion for negotiating obstacles. The authors proposed an effective approach that can learn robust bounding gaits more efficiently despite its large variation in dynamic body movements. The authors first pretrained the neural network (NN) based on data from a robot operated by conventional model-based controllers, and then further optimised the pretrained NN via deep reinforcement learning (DRL). In particular, the authors designed a reward function considering contact points and phases to enforce the gait symmetry and periodicity, which improved the bounding performance. The NN-based feedback controller was learned in the simulation and directly deployed on the real quadruped robot Jueying Mini successfully. A variety of environments are presented both indoors and outdoors with the authors’ approach. The authors’ approach shows efficient computing and good locomotion results by the Jueying Mini quadrupedal robot bounding over uneven terrain.</p><p>The cover image is based on the Research Article <i>Efficient learning of robust quadruped bounding using pretrained neural networks</i> by Zhicheng Wang et al., https://doi.org/10.1049/csy2.12062.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"4 4","pages":"331-338"},"PeriodicalIF":1.5000,"publicationDate":"2022-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12062","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/csy2.12062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
Bounding is one of the important gaits in quadrupedal locomotion for negotiating obstacles. The authors proposed an effective approach that can learn robust bounding gaits more efficiently despite its large variation in dynamic body movements. The authors first pretrained the neural network (NN) based on data from a robot operated by conventional model-based controllers, and then further optimised the pretrained NN via deep reinforcement learning (DRL). In particular, the authors designed a reward function considering contact points and phases to enforce the gait symmetry and periodicity, which improved the bounding performance. The NN-based feedback controller was learned in the simulation and directly deployed on the real quadruped robot Jueying Mini successfully. A variety of environments are presented both indoors and outdoors with the authors’ approach. The authors’ approach shows efficient computing and good locomotion results by the Jueying Mini quadrupedal robot bounding over uneven terrain.
The cover image is based on the Research Article Efficient learning of robust quadruped bounding using pretrained neural networks by Zhicheng Wang et al., https://doi.org/10.1049/csy2.12062.
跳跃是四足运动中跨越障碍物的重要步态之一。作者提出了一种有效的方法,可以更有效地学习鲁棒边界步态,尽管它在动态身体运动中变化很大。作者首先根据传统的基于模型的控制器操作的机器人的数据对神经网络(NN)进行预训练,然后通过深度强化学习(DRL)进一步优化预训练的神经网络。特别地,作者设计了一个考虑接触点和相位的奖励函数来增强步态的对称性和周期性,提高了边界性能。在仿真中学习了基于神经网络的反馈控制器,并成功地将其直接部署在真实的四足机器人觉营Mini上。通过作者的方法,呈现了室内和室外的各种环境。该方法证明了聚影迷你四足机器人在不平坦地形上跳跃的计算效率和良好的运动效果。封面图像基于Wang Zhicheng et al., https://doi.org/10.1049/csy2.12062的研究文章《高效学习鲁棒四足动物边界使用预训练神经网络》。