Saddle cycles: Solving rational expectations models featuring limit cycles (or chaos) using perturbation methods

IF 1.9 3区 经济学 Q2 ECONOMICS
Dana Galizia
{"title":"Saddle cycles: Solving rational expectations models featuring limit cycles (or chaos) using perturbation methods","authors":"Dana Galizia","doi":"10.3982/qe1491","DOIUrl":null,"url":null,"abstract":"Unlike linear ones, nonlinear business cycle models can generate sustained fluctuations even in the absence of shocks (e.g., via limit cycles/chaos). A popular approach to solving nonlinear models is perturbation methods. I show that, as typically implemented, these methods are incapable of finding solutions featuring limit cycles or chaos. Fundamentally, solutions are only required not to explode, while standard perturbation algorithms seek solutions that meet the stronger requirement of convergence to the steady state. I propose a modification to standard algorithms that does not impose this overly strong requirement.","PeriodicalId":46811,"journal":{"name":"Quantitative Economics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.3982/qe1491","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 8

Abstract

Unlike linear ones, nonlinear business cycle models can generate sustained fluctuations even in the absence of shocks (e.g., via limit cycles/chaos). A popular approach to solving nonlinear models is perturbation methods. I show that, as typically implemented, these methods are incapable of finding solutions featuring limit cycles or chaos. Fundamentally, solutions are only required not to explode, while standard perturbation algorithms seek solutions that meet the stronger requirement of convergence to the steady state. I propose a modification to standard algorithms that does not impose this overly strong requirement.
鞍环:利用摄动方法求解具有极限环(或混沌)特征的理性期望模型
与线性经济周期模型不同,非线性经济周期模型即使在没有冲击的情况下也能产生持续波动(例如,通过极限环/混沌)。求解非线性模型的常用方法是摄动法。我证明,作为典型的实现,这些方法不能找到具有极限环或混沌特征的解。从根本上说,解只要求不爆炸,而标准摄动算法寻求满足更强的收敛到稳态要求的解。我建议对标准算法进行修改,这样就不会强加这种过于强烈的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
5.60%
发文量
28
审稿时长
52 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信