The Hypervolume Newton Method for Constrained Multi-Objective Optimization Problems

IF 1.9 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Hao Wang, M. Emmerich, A. Deutz, V. S. Hernández, O. Schütze
{"title":"The Hypervolume Newton Method for Constrained Multi-Objective Optimization Problems","authors":"Hao Wang, M. Emmerich, A. Deutz, V. S. Hernández, O. Schütze","doi":"10.3390/mca28010010","DOIUrl":null,"url":null,"abstract":"Recently, the Hypervolume Newton Method (HVN) has been proposed as a fast and precise indicator-based method for solving unconstrained bi-objective optimization problems with objective functions. The HVN is defined on the space of (vectorized) fixed cardinality sets of decision space vectors for a given multi-objective optimization problem (MOP) and seeks to maximize the hypervolume indicator adopting the Newton–Raphson method for deterministic numerical optimization. To extend its scope to non-convex optimization problems, the HVN method was hybridized with a multi-objective evolutionary algorithm (MOEA), which resulted in a competitive solver for continuous unconstrained bi-objective optimization problems. In this paper, we extend the HVN to constrained MOPs with in principle any number of objectives. Similar to the original variant, the first- and second-order derivatives of the involved functions have to be given either analytically or numerically. We demonstrate the applicability of the extended HVN on a set of challenging benchmark problems and show that the new method can be readily applied to solve equality constraints with high precision and to some extent also inequalities. We finally use HVN as a local search engine within an MOEA and show the benefit of this hybrid method on several benchmark problems.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28010010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

Recently, the Hypervolume Newton Method (HVN) has been proposed as a fast and precise indicator-based method for solving unconstrained bi-objective optimization problems with objective functions. The HVN is defined on the space of (vectorized) fixed cardinality sets of decision space vectors for a given multi-objective optimization problem (MOP) and seeks to maximize the hypervolume indicator adopting the Newton–Raphson method for deterministic numerical optimization. To extend its scope to non-convex optimization problems, the HVN method was hybridized with a multi-objective evolutionary algorithm (MOEA), which resulted in a competitive solver for continuous unconstrained bi-objective optimization problems. In this paper, we extend the HVN to constrained MOPs with in principle any number of objectives. Similar to the original variant, the first- and second-order derivatives of the involved functions have to be given either analytically or numerically. We demonstrate the applicability of the extended HVN on a set of challenging benchmark problems and show that the new method can be readily applied to solve equality constraints with high precision and to some extent also inequalities. We finally use HVN as a local search engine within an MOEA and show the benefit of this hybrid method on several benchmark problems.
约束多目标优化问题的超体积牛顿法
最近,超体积牛顿法(HVN)被提出作为一种快速、精确的基于指标的方法,用于求解具有目标函数的无约束双目标优化问题。HVN定义在给定多目标优化问题(MOP)的决策空间向量的(矢量化)固定基数集的空间上,并采用牛顿-拉斐森方法寻求最大化超体积指标,用于确定性数值优化。为了将其范围扩展到非凸优化问题,将HVN方法与多目标进化算法(MOEA)相结合,为连续无约束双目标优化问题提供了一个竞争求解器。在本文中,我们将HVN扩展到原则上具有任意数量目标的约束MOP。与原始变体类似,所涉及函数的一阶和二阶导数必须通过解析或数值给出。我们证明了扩展HVN在一组具有挑战性的基准问题上的适用性,并表明新方法可以很容易地应用于求解高精度的等式约束,在一定程度上也可以求解不等式。最后,我们使用HVN作为MOEA中的局部搜索引擎,并展示了这种混合方法在几个基准问题上的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical & Computational Applications
Mathematical & Computational Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
10.50%
发文量
86
审稿时长
12 weeks
期刊介绍: Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信