Counting sheaves on Calabi–Yau 4-folds, I

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jeongseok Oh, Richard P. Thomas
{"title":"Counting sheaves on Calabi–Yau 4-folds, I","authors":"Jeongseok Oh, Richard P. Thomas","doi":"10.1215/00127094-2022-0059","DOIUrl":null,"url":null,"abstract":"Borisov-Joyce constructed a real virtual cycle on compact moduli spaces of stable sheaves on Calabi-Yau 4-folds, using derived differential geometry. We construct an algebraic virtual cycle. A key step is a localisation of Edidin-Graham's square root Euler class for $SO(r,\\mathbb C)$ bundles to the zero locus of an isotropic section, or to the support of an isotropic cone. We prove a torus localisation formula, making the invariants computable and extending them to the noncompact case when the fixed locus is compact. We give a $K$-theoretic refinement by defining $K$-theoretic square root Euler classes and their localised versions. In a sequel we prove our invariants reproduce those of Borisov-Joyce.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 33

Abstract

Borisov-Joyce constructed a real virtual cycle on compact moduli spaces of stable sheaves on Calabi-Yau 4-folds, using derived differential geometry. We construct an algebraic virtual cycle. A key step is a localisation of Edidin-Graham's square root Euler class for $SO(r,\mathbb C)$ bundles to the zero locus of an isotropic section, or to the support of an isotropic cone. We prove a torus localisation formula, making the invariants computable and extending them to the noncompact case when the fixed locus is compact. We give a $K$-theoretic refinement by defining $K$-theoretic square root Euler classes and their localised versions. In a sequel we prove our invariants reproduce those of Borisov-Joyce.
在Calabi-Yau上数捆4倍,我
Borisov-Joyce利用衍生微分几何构造了Calabi-Yau 4折上稳定轮轴紧致模空间上的实虚循环。我们构造一个代数虚循环。关键的一步是将eddin - graham的平方根欧拉类定位为$SO(r,\mathbb C)$束到各向同性截面的零轨迹,或各向同性锥的支撑。证明了环面局部化公式,使不变量可计算,并将其推广到固定轨迹紧致时的非紧致情况。通过定义K理论的平方根欧拉类及其局部化版本,给出了K理论的细化。接下来,我们证明了我们的不变量再现了鲍里索夫-乔伊斯的不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信