S. Dindorkar, Jaymin Mistry, J. Hire, Khushi Jain, Nandini Khona, Shreya Peddakolmi, Paresh More
{"title":"Synthesis of Graphene Oxide Enhanced Agar Composites: A Biocompatible Photo-catalyst for Degradation of Organic Dyes","authors":"S. Dindorkar, Jaymin Mistry, J. Hire, Khushi Jain, Nandini Khona, Shreya Peddakolmi, Paresh More","doi":"10.33697/ajur.2020.025","DOIUrl":null,"url":null,"abstract":"Herein we report the synthesis of graphene oxide-based agar composites using a solution casting method. Graphene oxide was synthesized by modified Hummer’s method and was characterized using X-ray diffraction (XRD) and Raman spectroscopy. The graphene oxide-based agar composites were characterized using X-ray diffraction (XRD) and UV-visible spectroscopy. Optical band gap obtained from the Tauc plot showed that the composites could be used in the photodegradation of dyes. The synthesized composite material was checked for its practical applicability in the degradation of methylene blue dye under solar irradiation; with an increase in the concentration of graphene oxide, catalyst, and H2O2, the rate constant increases. The rate constant was found to be inversely proportional to the concentration of methylene blue dye. Dosage of graphene oxide was found to be the most prominent factor in increasing the rate of photodegradation. It is clear from the data for the reaction system that the degradation reaction follows pseudo-first-order kinetics.\nKeywords: Composites; Ultra-sonication; Photodegradation; Methylene Blue; XRD; Graphene Oxide; Kinetics; Biocompatibility","PeriodicalId":72177,"journal":{"name":"American journal of undergraduate research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of undergraduate research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33697/ajur.2020.025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Herein we report the synthesis of graphene oxide-based agar composites using a solution casting method. Graphene oxide was synthesized by modified Hummer’s method and was characterized using X-ray diffraction (XRD) and Raman spectroscopy. The graphene oxide-based agar composites were characterized using X-ray diffraction (XRD) and UV-visible spectroscopy. Optical band gap obtained from the Tauc plot showed that the composites could be used in the photodegradation of dyes. The synthesized composite material was checked for its practical applicability in the degradation of methylene blue dye under solar irradiation; with an increase in the concentration of graphene oxide, catalyst, and H2O2, the rate constant increases. The rate constant was found to be inversely proportional to the concentration of methylene blue dye. Dosage of graphene oxide was found to be the most prominent factor in increasing the rate of photodegradation. It is clear from the data for the reaction system that the degradation reaction follows pseudo-first-order kinetics.
Keywords: Composites; Ultra-sonication; Photodegradation; Methylene Blue; XRD; Graphene Oxide; Kinetics; Biocompatibility