Advancing Discovery with Artificial Intelligence and Machine Learning at NSLS-II

Q3 Physics and Astronomy
A. Barbour, Stuart Campbell, T. Caswell, M. Fukuto, M. Hanwell, Andrew Kiss, T. Konstantinova, R. Laasch, Phillip M. Maffettone, Bruce Ravel, D. Olds
{"title":"Advancing Discovery with Artificial Intelligence and Machine Learning at NSLS-II","authors":"A. Barbour, Stuart Campbell, T. Caswell, M. Fukuto, M. Hanwell, Andrew Kiss, T. Konstantinova, R. Laasch, Phillip M. Maffettone, Bruce Ravel, D. Olds","doi":"10.1080/08940886.2022.2114716","DOIUrl":null,"url":null,"abstract":"With the National Synchrotron Light Source II (NSLS-II) coming online in 2015 as the brightest source in the world, the imminent up-grades at the Advanced Photon Source, Advanced Light Source, and Linear Coherent Light Source, and advances in detector technology, the data generation rates at the U.S. Department of Energy (DOE) Basic Energy Sciences’ X-ray light sources are skyrocketing. At NSLS-II, over 1 petabyte of raw data was produced last year, and that rate is expected to increase as the facility matures [1]. Despite such huge data generation rates, approaches to both experimental control and data analysis have not kept pace. Consequently, data collected in seconds to minutes may take weeks to months of analysis to understand. Due to such limita-tions, knowledge extraction is often divorced from the measurement process. The lack of real-time feedback forces users into flying blind at the beamline, leading to missed opportunities, mistakes, and inefficient use of beamtime as a resource—as all beamlines are oversubscribed. This is a challenge facing nearly all users of light sources. One promising path forward to solve this challenge—both during data collection and post-experiment analysis—is the use of artificial intelligence (AI) and machine learning (ML) methods [1, 2]. In this contribution, we review recent developments employing AI/ML methods at the NSLS-II, tackling the","PeriodicalId":39020,"journal":{"name":"Synchrotron Radiation News","volume":"35 1","pages":"44 - 50"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synchrotron Radiation News","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/08940886.2022.2114716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 4

Abstract

With the National Synchrotron Light Source II (NSLS-II) coming online in 2015 as the brightest source in the world, the imminent up-grades at the Advanced Photon Source, Advanced Light Source, and Linear Coherent Light Source, and advances in detector technology, the data generation rates at the U.S. Department of Energy (DOE) Basic Energy Sciences’ X-ray light sources are skyrocketing. At NSLS-II, over 1 petabyte of raw data was produced last year, and that rate is expected to increase as the facility matures [1]. Despite such huge data generation rates, approaches to both experimental control and data analysis have not kept pace. Consequently, data collected in seconds to minutes may take weeks to months of analysis to understand. Due to such limita-tions, knowledge extraction is often divorced from the measurement process. The lack of real-time feedback forces users into flying blind at the beamline, leading to missed opportunities, mistakes, and inefficient use of beamtime as a resource—as all beamlines are oversubscribed. This is a challenge facing nearly all users of light sources. One promising path forward to solve this challenge—both during data collection and post-experiment analysis—is the use of artificial intelligence (AI) and machine learning (ML) methods [1, 2]. In this contribution, we review recent developments employing AI/ML methods at the NSLS-II, tackling the
在NSLS-II用人工智能和机器学习推进发现
随着国家同步加速器光源II (NSLS-II)作为世界上最亮的光源于2015年上线,先进光子源、先进光源和线性相干光源的升级即将到来,以及探测器技术的进步,美国能源部(DOE)基础能源科学x射线光源的数据生成率正在飙升。在NSLS-II上,去年产生了超过1pb的原始数据,随着设备的成熟,这一速度预计将增加。尽管数据产生率如此之高,但实验控制和数据分析的方法并没有跟上步伐。因此,在几秒到几分钟内收集的数据可能需要数周到数月的分析才能理解。由于这些限制,知识提取常常与度量过程分离。缺乏实时反馈迫使用户在波束线上盲目飞行,导致错过机会、错误和作为资源的波束时间的低效使用——因为所有的波束线都被超额订阅了。这是几乎所有光源使用者所面临的挑战。在数据收集和实验后分析过程中,解决这一挑战的一个有希望的途径是使用人工智能(AI)和机器学习(ML)方法[1,2]。在这篇文章中,我们回顾了在NSLS-II中使用AI/ML方法的最新发展,解决了以下问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Synchrotron Radiation News
Synchrotron Radiation News Physics and Astronomy-Nuclear and High Energy Physics
CiteScore
1.30
自引率
0.00%
发文量
46
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信