G. Pilo, P. Oke, R. Coleman, T. Rykova, K. Ridgway
{"title":"Patterns of Vertical Velocity Induced by Eddy Distortion in an Ocean Model: VERTICAL VELOCITY AND EDDY DISTORTION","authors":"G. Pilo, P. Oke, R. Coleman, T. Rykova, K. Ridgway","doi":"10.1002/2017jc013298","DOIUrl":null,"url":null,"abstract":"Vertical motions within eddies play an important role in the exchange of properties and energy between the upper ocean and the ocean interior. Here we analyze alternating upward and downward cells in anticyclonic eddies in the East Australian Current region using a global eddy‐resolving model. The cells explain over 50% of the variance of vertical velocity within these eddies. We show that the upward and downward cells relate to eddy distortion, defined as the change in eddy shape over time. In anticyclonic eddies in the Southern Hemisphere, an inward distortion is associated with upward motion and an outward distortion is associated with downward motion. We discuss two mechanisms that link eddy distortion to vertical velocity. One mechanism relates to changes in stratification and relative vorticity in the eddy interior. The other mechanism relates to divergence of the horizontal flow in different quadrants of the eddy. We show that mesoscale changes in sea level anomaly can be used to infer the vertical motion within eddies.","PeriodicalId":15836,"journal":{"name":"Journal of Geophysical Research","volume":"123 1","pages":"2274-2292"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/2017jc013298","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/2017jc013298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 20
Abstract
Vertical motions within eddies play an important role in the exchange of properties and energy between the upper ocean and the ocean interior. Here we analyze alternating upward and downward cells in anticyclonic eddies in the East Australian Current region using a global eddy‐resolving model. The cells explain over 50% of the variance of vertical velocity within these eddies. We show that the upward and downward cells relate to eddy distortion, defined as the change in eddy shape over time. In anticyclonic eddies in the Southern Hemisphere, an inward distortion is associated with upward motion and an outward distortion is associated with downward motion. We discuss two mechanisms that link eddy distortion to vertical velocity. One mechanism relates to changes in stratification and relative vorticity in the eddy interior. The other mechanism relates to divergence of the horizontal flow in different quadrants of the eddy. We show that mesoscale changes in sea level anomaly can be used to infer the vertical motion within eddies.
期刊介绍:
Journal of Geophysical Research (JGR) publishes original scientific research on the physical, chemical, and biological processes that contribute to the understanding of the Earth, Sun, and solar system and all of their environments and components. JGR is currently organized into seven disciplinary sections (Atmospheres, Biogeosciences, Earth Surface, Oceans, Planets, Solid Earth, Space Physics). Sections may be added or combined in response to changes in the science.