El-Sayed M. El-Refaie , L.S. Nasrat , M. Kh. Mohamed , I.A. Ibrahim
{"title":"Investigation the dielectric strength and mechanical features of nitrile butadiene rubber enhanced by different nanoparticles","authors":"El-Sayed M. El-Refaie , L.S. Nasrat , M. Kh. Mohamed , I.A. Ibrahim","doi":"10.1016/j.ejpe.2023.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>To investigate the dielectric strength and mechanical features of modified nitrile butadiene rubber (NBR), titanium dioxide (TiO<sub>2</sub>) and magnesium oxide (MgO) nanoparticles have been used. Specimens have been experimentally prepared with loading various concentrations (0.5, 1, 1.5 and 3 parts per hundred part of rubber “Phr”) to NBR base material. The dielectric strength has been evaluated by applying AC high voltage on the prepared samples up to reaching the breakdown state. On the other hand tensile strength, elongation at break and modulus at 100% elongation have been experimented to exploration the mechanical features of the NBR enhanced by nanoparticles. Although all the recorded results of modified NBR samples showed improvement more than the base material at dielectric, tensile strength and modulus at 100% elongation tests. The elongation at break result showed a negative impact; it was caused by forming a new links between NBR and nanoparticles. The dielectric constants of applied nanoparticles are greater than NBR base materials, which can physically explain the improvement in all recorded breakdown results. But the enhancement in the measured mechanical features can be attributed to chemical bonds which were reconstructed and the gaps of NBR base material that had been filled.</p></div>","PeriodicalId":11625,"journal":{"name":"Egyptian Journal of Petroleum","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Petroleum","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110062123000181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 1
Abstract
To investigate the dielectric strength and mechanical features of modified nitrile butadiene rubber (NBR), titanium dioxide (TiO2) and magnesium oxide (MgO) nanoparticles have been used. Specimens have been experimentally prepared with loading various concentrations (0.5, 1, 1.5 and 3 parts per hundred part of rubber “Phr”) to NBR base material. The dielectric strength has been evaluated by applying AC high voltage on the prepared samples up to reaching the breakdown state. On the other hand tensile strength, elongation at break and modulus at 100% elongation have been experimented to exploration the mechanical features of the NBR enhanced by nanoparticles. Although all the recorded results of modified NBR samples showed improvement more than the base material at dielectric, tensile strength and modulus at 100% elongation tests. The elongation at break result showed a negative impact; it was caused by forming a new links between NBR and nanoparticles. The dielectric constants of applied nanoparticles are greater than NBR base materials, which can physically explain the improvement in all recorded breakdown results. But the enhancement in the measured mechanical features can be attributed to chemical bonds which were reconstructed and the gaps of NBR base material that had been filled.
期刊介绍:
Egyptian Journal of Petroleum is addressed to the fields of crude oil, natural gas, energy and related subjects. Its objective is to serve as a forum for research and development covering the following areas: • Sedimentation and petroleum exploration. • Production. • Analysis and testing. • Chemistry and technology of petroleum and natural gas. • Refining and processing. • Catalysis. • Applications and petrochemicals. It also publishes original research papers and reviews in areas relating to synthetic fuels and lubricants - pollution - corrosion - alternate sources of energy - gasification, liquefaction and geology of coal - tar sands and oil shale - biomass as a source of renewable energy. To meet with these requirements the Egyptian Journal of Petroleum welcomes manuscripts and review papers reporting on the state-of-the-art in the aforementioned topics. The Egyptian Journal of Petroleum is also willing to publish the proceedings of petroleum and energy related conferences in a single volume form.