Comparison of cross-subject EEG emotion recognition algorithms in the BCI Controlled Robot Contest in World Robot Contest 2021

Chao Tang, Yunhuan Li, Badong Chen
{"title":"Comparison of cross-subject EEG emotion recognition algorithms in the BCI Controlled Robot Contest in World Robot Contest 2021","authors":"Chao Tang, Yunhuan Li, Badong Chen","doi":"10.26599/BSA.2022.9050013","DOIUrl":null,"url":null,"abstract":"Electroencephalogram (EEG) data depict various emotional states and reflect brain activity. There has been increasing interest in EEG emotion recognition in brain–computer interface systems (BCIs). In the World Robot Contest (WRC), the BCI Controlled Robot Contest successfully staged an emotion recognition technology competition. Three types of emotions (happy, sad, and neutral) are modeled using EEG signals. In this study, 5 methods employed by different teams are compared. The results reveal that classical machine learning approaches and deep learning methods perform similarly in offline recognition, whereas deep learning methods perform better in online cross-subject decoding.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Science Advances","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.26599/BSA.2022.9050013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Electroencephalogram (EEG) data depict various emotional states and reflect brain activity. There has been increasing interest in EEG emotion recognition in brain–computer interface systems (BCIs). In the World Robot Contest (WRC), the BCI Controlled Robot Contest successfully staged an emotion recognition technology competition. Three types of emotions (happy, sad, and neutral) are modeled using EEG signals. In this study, 5 methods employed by different teams are compared. The results reveal that classical machine learning approaches and deep learning methods perform similarly in offline recognition, whereas deep learning methods perform better in online cross-subject decoding.
2021年世界机器人大赛脑机接口控制机器人大赛跨学科脑电情感识别算法比较
脑电图(EEG)数据描述各种情绪状态并反映大脑活动。脑机接口系统(bci)中EEG情绪识别的研究日益受到关注。在世界机器人大赛(WRC)中,BCI控制机器人大赛成功举办了情感识别技术比赛。三种类型的情绪(快乐,悲伤和中性)使用脑电图信号建模。在本研究中,比较了不同团队采用的5种方法。结果表明,经典机器学习方法和深度学习方法在离线识别中表现相似,而深度学习方法在在线跨主题解码中表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
27
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信