{"title":"Crystal structure of vismodegib, C19H14Cl2N2O3S","authors":"J. Kaduk, S. Gates-Rector, T. Blanton","doi":"10.1017/S0885715622000446","DOIUrl":null,"url":null,"abstract":"The crystal structure of vismodegib has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional theory techniques. Vismodegib crystallizes in space group P21/a (#14) with a = 16.92070(20), b = 10.20235(4), c = 12.16161(10) Å, β = 108.6802(3)°, V = 1988.873(9) Å3, and Z = 4. The crystal structure consists of corrugated layers of molecules parallel to the bc-plane. There is only one classical hydrogen bond in the structure, between the amide nitrogen atom and the N atom of the pyridine ring. Pairs of these hydrogen bonds link the molecules into dimers, with a graph set R2,2(14) > a > a. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":"38 1","pages":"1 - 6"},"PeriodicalIF":0.3000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Diffraction","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1017/S0885715622000446","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
The crystal structure of vismodegib has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional theory techniques. Vismodegib crystallizes in space group P21/a (#14) with a = 16.92070(20), b = 10.20235(4), c = 12.16161(10) Å, β = 108.6802(3)°, V = 1988.873(9) Å3, and Z = 4. The crystal structure consists of corrugated layers of molecules parallel to the bc-plane. There is only one classical hydrogen bond in the structure, between the amide nitrogen atom and the N atom of the pyridine ring. Pairs of these hydrogen bonds link the molecules into dimers, with a graph set R2,2(14) > a > a. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).
期刊介绍:
Powder Diffraction is a quarterly journal publishing articles, both experimental and theoretical, on the use of powder diffraction and related techniques for the characterization of crystalline materials. It is published by Cambridge University Press (CUP) for the International Centre for Diffraction Data (ICDD).