http://ilirias.com/jiasf/vol_13_issue_1.html

IF 0.3 Q4 MATHEMATICS
Mohd Shoaib Khan, Meenakshi Kaushal, Q. M. Danish Lohani
{"title":"http://ilirias.com/jiasf/vol_13_issue_1.html","authors":"Mohd Shoaib Khan, Meenakshi Kaushal, Q. M. Danish Lohani","doi":"10.54379/jiasf-2022-1-1","DOIUrl":null,"url":null,"abstract":"In machine learning, distance measure plays an important role in defining the similarity between two data-items. In the paper, we discuss some of the drawbacks of distance measures (metrics) with their possibly induced clustering algorithms. Further, to overcome the drawbacks, we propose a novel intuitionistic fuzzy distance measure associated with generalized cesa´ro paranormed sequence space Cesq p(F). We also discuss some geometric properties of Cesq p(F). Moreover, the proposed distance measure is utilized in k-mean clustering algorithm to propose fuzzy c-mean clustering algorithm for Cesq p(F)","PeriodicalId":43883,"journal":{"name":"Journal of Inequalities and Special Functions","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Special Functions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54379/jiasf-2022-1-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In machine learning, distance measure plays an important role in defining the similarity between two data-items. In the paper, we discuss some of the drawbacks of distance measures (metrics) with their possibly induced clustering algorithms. Further, to overcome the drawbacks, we propose a novel intuitionistic fuzzy distance measure associated with generalized cesa´ro paranormed sequence space Cesq p(F). We also discuss some geometric properties of Cesq p(F). Moreover, the proposed distance measure is utilized in k-mean clustering algorithm to propose fuzzy c-mean clustering algorithm for Cesq p(F)
http://ilirias.com/jiasf/vol_13_issue_1.html
在机器学习中,距离度量在定义两个数据项之间的相似性方面起着重要作用。本文讨论了距离度量及其可能引起的聚类算法的一些缺陷。进一步,为了克服这些缺点,我们提出了一种新的直觉模糊距离测度,该测度与广义cesa´o副形序列空间Cesq p(F)相关联。我们还讨论了Cesq p(F)的一些几何性质。此外,将所提出的距离测度应用于k-均值聚类算法,提出了Cesq p(F)的模糊c-均值聚类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信