Data-driven global weather predictions at high resolutions

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
John Taylor, P. Larraondo, B. D. de Supinski
{"title":"Data-driven global weather predictions at high resolutions","authors":"John Taylor, P. Larraondo, B. D. de Supinski","doi":"10.1177/10943420211039818","DOIUrl":null,"url":null,"abstract":"Society has benefited enormously from the continuous advancement in numerical weather prediction that has occurred over many decades driven by a combination of outstanding scientific, computational and technological breakthroughs. Here, we demonstrate that data-driven methods are now positioned to contribute to the next wave of major advances in atmospheric science. We show that data-driven models can predict important meteorological quantities of interest to society such as global high resolution precipitation fields (0.25°) and can deliver accurate forecasts of the future state of the atmosphere without prior knowledge of the laws of physics and chemistry. We also show how these data-driven methods can be scaled to run on supercomputers with up to 1024 modern graphics processing units and beyond resulting in rapid training of data-driven models, thus supporting a cycle of rapid research and innovation. Taken together, these two results illustrate the significant potential of data-driven methods to advance atmospheric science and operational weather forecasting.","PeriodicalId":54957,"journal":{"name":"International Journal of High Performance Computing Applications","volume":"36 1","pages":"130 - 140"},"PeriodicalIF":3.5000,"publicationDate":"2021-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10943420211039818","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 7

Abstract

Society has benefited enormously from the continuous advancement in numerical weather prediction that has occurred over many decades driven by a combination of outstanding scientific, computational and technological breakthroughs. Here, we demonstrate that data-driven methods are now positioned to contribute to the next wave of major advances in atmospheric science. We show that data-driven models can predict important meteorological quantities of interest to society such as global high resolution precipitation fields (0.25°) and can deliver accurate forecasts of the future state of the atmosphere without prior knowledge of the laws of physics and chemistry. We also show how these data-driven methods can be scaled to run on supercomputers with up to 1024 modern graphics processing units and beyond resulting in rapid training of data-driven models, thus supporting a cycle of rapid research and innovation. Taken together, these two results illustrate the significant potential of data-driven methods to advance atmospheric science and operational weather forecasting.
数据驱动的高分辨率全球天气预报
几十年来,由于科学、计算和技术方面的重大突破,数值天气预报的不断进步使社会受益匪浅。在这里,我们证明了数据驱动的方法现在可以为大气科学的下一波重大进展做出贡献。我们表明,数据驱动的模型可以预测社会感兴趣的重要气象量,如全球高分辨率降水场(0.25°),并且可以在不事先了解物理和化学定律的情况下提供对未来大气状态的准确预测。我们还展示了如何将这些数据驱动的方法扩展到具有多达1024个现代图形处理单元的超级计算机上,从而实现数据驱动模型的快速训练,从而支持快速研究和创新的周期。综上所述,这两个结果说明了数据驱动方法在推进大气科学和业务天气预报方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of High Performance Computing Applications
International Journal of High Performance Computing Applications 工程技术-计算机:跨学科应用
CiteScore
6.10
自引率
6.50%
发文量
32
审稿时长
>12 weeks
期刊介绍: With ever increasing pressure for health services in all countries to meet rising demands, improve their quality and efficiency, and to be more accountable; the need for rigorous research and policy analysis has never been greater. The Journal of Health Services Research & Policy presents the latest scientific research, insightful overviews and reflections on underlying issues, and innovative, thought provoking contributions from leading academics and policy-makers. It provides ideas and hope for solving dilemmas that confront all countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信