{"title":"Data-driven global weather predictions at high resolutions","authors":"John Taylor, P. Larraondo, B. D. de Supinski","doi":"10.1177/10943420211039818","DOIUrl":null,"url":null,"abstract":"Society has benefited enormously from the continuous advancement in numerical weather prediction that has occurred over many decades driven by a combination of outstanding scientific, computational and technological breakthroughs. Here, we demonstrate that data-driven methods are now positioned to contribute to the next wave of major advances in atmospheric science. We show that data-driven models can predict important meteorological quantities of interest to society such as global high resolution precipitation fields (0.25°) and can deliver accurate forecasts of the future state of the atmosphere without prior knowledge of the laws of physics and chemistry. We also show how these data-driven methods can be scaled to run on supercomputers with up to 1024 modern graphics processing units and beyond resulting in rapid training of data-driven models, thus supporting a cycle of rapid research and innovation. Taken together, these two results illustrate the significant potential of data-driven methods to advance atmospheric science and operational weather forecasting.","PeriodicalId":54957,"journal":{"name":"International Journal of High Performance Computing Applications","volume":"36 1","pages":"130 - 140"},"PeriodicalIF":3.5000,"publicationDate":"2021-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10943420211039818","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 7
Abstract
Society has benefited enormously from the continuous advancement in numerical weather prediction that has occurred over many decades driven by a combination of outstanding scientific, computational and technological breakthroughs. Here, we demonstrate that data-driven methods are now positioned to contribute to the next wave of major advances in atmospheric science. We show that data-driven models can predict important meteorological quantities of interest to society such as global high resolution precipitation fields (0.25°) and can deliver accurate forecasts of the future state of the atmosphere without prior knowledge of the laws of physics and chemistry. We also show how these data-driven methods can be scaled to run on supercomputers with up to 1024 modern graphics processing units and beyond resulting in rapid training of data-driven models, thus supporting a cycle of rapid research and innovation. Taken together, these two results illustrate the significant potential of data-driven methods to advance atmospheric science and operational weather forecasting.
期刊介绍:
With ever increasing pressure for health services in all countries to meet rising demands, improve their quality and efficiency, and to be more accountable; the need for rigorous research and policy analysis has never been greater. The Journal of Health Services Research & Policy presents the latest scientific research, insightful overviews and reflections on underlying issues, and innovative, thought provoking contributions from leading academics and policy-makers. It provides ideas and hope for solving dilemmas that confront all countries.