Energy system benefits of combined electricity and thermal storage integrated with district heating

Q1 Social Sciences
R. Lund
{"title":"Energy system benefits of combined electricity and thermal storage integrated with district heating","authors":"R. Lund","doi":"10.5278/IJSEPM.6273","DOIUrl":null,"url":null,"abstract":"In the development towards a smart and renewable energy systems with increasing supply of electricity from fluctuating sources there is an increasing need for system flexibility. In this context the role and need for grid-level electricity storage is debated. Ideally, there would not be a need for storage, but the alternative system flexibility solutions may not cover all the flexibility needs, which will leave a potential for storage of electricity. In this study a compressed heat energy storage (CHEST) is assessed. It combines electricity and thermal storage in one system and can simultaneously benefit electricity and district heating systems. In a technical energy system analysis with the energy system of Germany as a case, a CHEST system is analyzed in different configurations with and without district heating integration. The results indicate that electrochemical storage is more effective than CHEST if district heating integration is not assumed. However, if district heating integration is assumed, CHEST can be more effective in reducing primary energy supply. This applies for district heating based on electrified heat sources, whereas in district heating supplied by combined heat and power plants and fuel boilers, CHEST do not show more effective.","PeriodicalId":37803,"journal":{"name":"International Journal of Sustainable Energy Planning and Management","volume":"31 1","pages":"23-38"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sustainable Energy Planning and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5278/IJSEPM.6273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 2

Abstract

In the development towards a smart and renewable energy systems with increasing supply of electricity from fluctuating sources there is an increasing need for system flexibility. In this context the role and need for grid-level electricity storage is debated. Ideally, there would not be a need for storage, but the alternative system flexibility solutions may not cover all the flexibility needs, which will leave a potential for storage of electricity. In this study a compressed heat energy storage (CHEST) is assessed. It combines electricity and thermal storage in one system and can simultaneously benefit electricity and district heating systems. In a technical energy system analysis with the energy system of Germany as a case, a CHEST system is analyzed in different configurations with and without district heating integration. The results indicate that electrochemical storage is more effective than CHEST if district heating integration is not assumed. However, if district heating integration is assumed, CHEST can be more effective in reducing primary energy supply. This applies for district heating based on electrified heat sources, whereas in district heating supplied by combined heat and power plants and fuel boilers, CHEST do not show more effective.
结合区域供热的电储联产能源系统效益
在向智能和可再生能源系统发展的过程中,随着电力供应的增加,对系统灵活性的需求也越来越大。在这种背景下,电网级电力存储的作用和需求被争论。理想情况下,不需要存储,但替代系统灵活性解决方案可能无法满足所有灵活性需求,这将留下电力存储的潜力。在这项研究中,压缩热能储存(CHEST)进行了评估。它将电力和热储存结合在一个系统中,可以同时使电力和区域供热系统受益。在以德国能源系统为例的能源系统技术分析中,分析了有和没有区域供热一体化的CHEST系统的不同配置。结果表明,在不考虑区域供热一体化的情况下,电化学储能比CHEST更有效。然而,如果假设区域供热一体化,CHEST可以更有效地减少一次能源供应。这适用于基于电热源的区域供热,而在热电联产和燃料锅炉提供的区域供热中,CHEST没有显示出更有效的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Sustainable Energy Planning and Management
International Journal of Sustainable Energy Planning and Management Social Sciences-Geography, Planning and Development
CiteScore
7.60
自引率
0.00%
发文量
18
审稿时长
30 weeks
期刊介绍: The journal is an international interdisciplinary journal in Sustainable Energy Planning and Management combining engineering and social science within Energy System Analysis, Feasibility Studies and Public Regulation. The journal especially welcomes papers within the following three focus areas: Energy System analysis including theories, methodologies, data handling and software tools as well as specific models and analyses at local, regional, country and/or global level. Economics, Socio economics and Feasibility studies including theories and methodologies of institutional economics as well as specific feasibility studies and analyses. Public Regulation and management including theories and methodologies as well as specific analyses and proposals in the light of the implementation and transition into sustainable energy systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信