{"title":"Classification of plant diseases using machine and deep learning","authors":"Monika Lamba, Yogita Gigras, A. Dhull","doi":"10.1515/comp-2020-0122","DOIUrl":null,"url":null,"abstract":"Abstract Detection of plant disease has a crucial role in better understanding the economy of India in terms of agricultural productivity. Early recognition and categorization of diseases in plants are very crucial as it can adversely affect the growth and development of species. Numerous machine learning methods like SVM (support vector machine), random forest, KNN (k-nearest neighbor), Naïve Bayes, decision tree, etc., have been exploited for recognition, discovery, and categorization of plant diseases; however, the advancement of machine learning by DL (deep learning) is supposed to possess tremendous potential in enhancing the accuracy. This paper proposed a model comprising of Auto-Color Correlogram as image filter and DL as classifiers with different activation functions for plant disease. This proposed model is implemented on four different datasets to solve binary and multiclass subcategories of plant diseases. Using the proposed model, results achieved are better, obtaining 99.4% accuracy and 99.9% sensitivity for binary class and 99.2% accuracy for multiclass. It is proven that the proposed model outperforms other approaches, namely LibSVM, SMO (sequential minimal optimization), and DL with activation function softmax and softsign in terms of F-measure, recall, MCC (Matthews correlation coefficient), specificity and sensitivity.","PeriodicalId":43014,"journal":{"name":"Open Computer Science","volume":"11 1","pages":"491 - 508"},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/comp-2020-0122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 10
Abstract
Abstract Detection of plant disease has a crucial role in better understanding the economy of India in terms of agricultural productivity. Early recognition and categorization of diseases in plants are very crucial as it can adversely affect the growth and development of species. Numerous machine learning methods like SVM (support vector machine), random forest, KNN (k-nearest neighbor), Naïve Bayes, decision tree, etc., have been exploited for recognition, discovery, and categorization of plant diseases; however, the advancement of machine learning by DL (deep learning) is supposed to possess tremendous potential in enhancing the accuracy. This paper proposed a model comprising of Auto-Color Correlogram as image filter and DL as classifiers with different activation functions for plant disease. This proposed model is implemented on four different datasets to solve binary and multiclass subcategories of plant diseases. Using the proposed model, results achieved are better, obtaining 99.4% accuracy and 99.9% sensitivity for binary class and 99.2% accuracy for multiclass. It is proven that the proposed model outperforms other approaches, namely LibSVM, SMO (sequential minimal optimization), and DL with activation function softmax and softsign in terms of F-measure, recall, MCC (Matthews correlation coefficient), specificity and sensitivity.