Several inequalities For log-convex functions

IF 0.3 Q4 MATHEMATICS
Merve Avci ArdiÇ , Ahmet Ocak Akdemir , M. Emin Özdemir
{"title":"Several inequalities For log-convex functions","authors":"Merve Avci ArdiÇ ,&nbsp;Ahmet Ocak Akdemir ,&nbsp;M. Emin Özdemir","doi":"10.1016/j.trmi.2018.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we recall Ostrowski’s inequality, Hadamard’s inequality and the definition of <span><math><mi>l</mi><mi>o</mi><mi>g</mi></math></span>-convex functions. We also mention an useful integral identity in the first part of our study. The second part of our study includes new results. We prove new generalizations for <span><math><mo>log</mo></math></span>-convex functions. Several new Ostrowski type inequalities have been established and some special cases have been given by choosing <span><math><mi>h</mi><mo>=</mo><mn>0</mn></math></span> or <span><math><mi>x</mi><mo>=</mo><mfrac><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo></math></span>\n</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"172 2","pages":"Pages 140-145"},"PeriodicalIF":0.3000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2018.03.004","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809217301502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we recall Ostrowski’s inequality, Hadamard’s inequality and the definition of log-convex functions. We also mention an useful integral identity in the first part of our study. The second part of our study includes new results. We prove new generalizations for log-convex functions. Several new Ostrowski type inequalities have been established and some special cases have been given by choosing h=0 or x=a+b2.

对数凸函数的几个不等式
本文回顾了Ostrowski不等式、Hadamard不等式以及对数凸函数的定义。我们在第一部分中也提到了一个有用的积分恒等式。我们研究的第二部分包括新的结果。我们证明了对数凸函数的新推广。本文建立了几个新的Ostrowski型不等式,并给出了h=0或x=a+b2的一些特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
50.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信