Bogoliubov Dynamics and Higher-order Corrections for the Regularized Nelson Model

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
M. Falconi, Nikolai Leopold, D. Mitrouskas, S. Petrat
{"title":"Bogoliubov Dynamics and Higher-order Corrections for the Regularized Nelson Model","authors":"M. Falconi, Nikolai Leopold, D. Mitrouskas, S. Petrat","doi":"10.1142/s0129055x2350006x","DOIUrl":null,"url":null,"abstract":"We study the time evolution of the Nelson model in a mean-field limit in which N nonrelativistic bosons weakly couple (w.r.t. the particle number) to a positive or zero mass quantized scalar field. Our main result is the derivation of the Bogoliubov dynamics and higher-order corrections. More precisely, we prove the convergence of the approximate wave function to the many-body wave function in norm, with a convergence rate proportional to the number of corrections taken into account in the approximation. We prove an analogous result for the unitary propagator. As an application, we derive a simple system of PDEs describing the time evolution of the firstand second-order approximation to the one-particle reduced density matrices of the particles and the quantum field, respectively. MSC class: 35Q40, 35Q55, 81Q05, 81T10, 81V73, 82C10","PeriodicalId":54483,"journal":{"name":"Reviews in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0129055x2350006x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 5

Abstract

We study the time evolution of the Nelson model in a mean-field limit in which N nonrelativistic bosons weakly couple (w.r.t. the particle number) to a positive or zero mass quantized scalar field. Our main result is the derivation of the Bogoliubov dynamics and higher-order corrections. More precisely, we prove the convergence of the approximate wave function to the many-body wave function in norm, with a convergence rate proportional to the number of corrections taken into account in the approximation. We prove an analogous result for the unitary propagator. As an application, we derive a simple system of PDEs describing the time evolution of the firstand second-order approximation to the one-particle reduced density matrices of the particles and the quantum field, respectively. MSC class: 35Q40, 35Q55, 81Q05, 81T10, 81V73, 82C10
正则化Nelson模型的Bogoliubov动力学和高阶修正
我们研究了Nelson模型在平均场极限下的时间演化,其中N个非相对论玻色子弱耦合(w.r.t.粒子数)到正或零质量量化标量场。我们的主要结果是Bogoliubov动力学的推导和高阶校正。更准确地说,我们证明了近似波函数在范数下对多体波函数的收敛性,收敛速度与近似中考虑的校正次数成正比。我们证明了酉传播子的一个类似结果。作为一个应用,我们导出了一个简单的偏微分方程系统,该系统分别描述了粒子和量子场的单粒子约化密度矩阵的一阶和二阶近似的时间演化。MSC等级:35Q40、35Q55、81Q05、81T10、81V73、82C10
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reviews in Mathematical Physics
Reviews in Mathematical Physics 物理-物理:数学物理
CiteScore
3.00
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: Reviews in Mathematical Physics fills the need for a review journal in the field, but also accepts original research papers of high quality. The review papers - introductory and survey papers - are of relevance not only to mathematical physicists, but also to mathematicians and theoretical physicists interested in interdisciplinary topics. Original research papers are not subject to page limitations provided they are of importance to this readership. It is desirable that such papers have an expository part understandable to a wider readership than experts. Papers with the character of a scientific letter are usually not suitable for RMP.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信