Crystal structure of danofloxacin mesylate (C19H21FN3O3)(CH3O3S)

IF 0.3 4区 材料科学 Q4 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Tawnee M. Ens, J. Kaduk, A. Došen, T. Blanton
{"title":"Crystal structure of danofloxacin mesylate (C19H21FN3O3)(CH3O3S)","authors":"Tawnee M. Ens, J. Kaduk, A. Došen, T. Blanton","doi":"10.1017/s0885715623000271","DOIUrl":null,"url":null,"abstract":"The crystal structure of danofloxacin mesylate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Danofloxacin mesylate crystallizes in space group P1 (#1) with a = 6.77474(8), b = 12.4973(4), c = 12.82826(28) Å, α = 84.8709(29), β = 87.7501(10), γ = 74.9916(4)°, V = 1044.723(11) Å3, and Z = 2. The protonation of the danofloxacin cations was established by the analysis of potential intermolecular interactions and differs from that expected from isolated-cation calculations. The crystal structure consists of alternating layers of cations and anions parallel to the ac-plane. There is parallel stacking of the oxoquinoline rings along the a-axis. The expected N–H⋯O hydrogen bonds between the cations and anions are not present. Each cation makes an N–H⋯O hydrogen bond with the other cation, resulting in zig-zag chains along the a-axis. Both cations have strong intramolecular O–H⋯O hydrogen bonds. There are several C–H⋯O hydrogen bonds between the danofloxacin cations and mesylate anions. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Diffraction","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1017/s0885715623000271","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

The crystal structure of danofloxacin mesylate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Danofloxacin mesylate crystallizes in space group P1 (#1) with a = 6.77474(8), b = 12.4973(4), c = 12.82826(28) Å, α = 84.8709(29), β = 87.7501(10), γ = 74.9916(4)°, V = 1044.723(11) Å3, and Z = 2. The protonation of the danofloxacin cations was established by the analysis of potential intermolecular interactions and differs from that expected from isolated-cation calculations. The crystal structure consists of alternating layers of cations and anions parallel to the ac-plane. There is parallel stacking of the oxoquinoline rings along the a-axis. The expected N–H⋯O hydrogen bonds between the cations and anions are not present. Each cation makes an N–H⋯O hydrogen bond with the other cation, resulting in zig-zag chains along the a-axis. Both cations have strong intramolecular O–H⋯O hydrogen bonds. There are several C–H⋯O hydrogen bonds between the danofloxacin cations and mesylate anions. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).
甲磺酸丹诺沙星(C19H21FN3O3)(CH3O3S)的晶体结构
利用同步x射线粉末衍射数据对甲磺酸丹诺氟沙星的晶体结构进行了解析和细化,并利用密度泛函理论技术对其进行了优化。甲磺酸达诺氟沙星在P1(#1)空间群中结晶,a = 6.77474(8), b = 12.4973(4), c = 12.82826(28) Å, α = 84.8709(29), β = 87.7501(10), γ = 74.9916(4)°,V = 1044.723(11) Å3, Z = 2。丹氧氟沙星阳离子的质子化是通过分析潜在的分子间相互作用确定的,与分离阳离子计算的结果不同。晶体结构由平行于ac平面的阳离子和阴离子交替层组成。氧喹啉环沿a轴平行堆叠。阳离子和阴离子之间预期的N-H⋯O氢键不存在。每个阳离子与另一个阳离子形成一个N-H⋯O氢键,形成沿着a轴的锯齿形链。两种阳离子都具有很强的分子内O - h⋯O氢键。danoflo沙星阳离子和甲磺酸阴离子之间有几个C-H⋯O氢键。粉末图案已提交给ICDD®,纳入粉末衍射文件™(PDF®)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Powder Diffraction
Powder Diffraction 工程技术-材料科学:表征与测试
CiteScore
0.90
自引率
0.00%
发文量
50
审稿时长
>12 weeks
期刊介绍: Powder Diffraction is a quarterly journal publishing articles, both experimental and theoretical, on the use of powder diffraction and related techniques for the characterization of crystalline materials. It is published by Cambridge University Press (CUP) for the International Centre for Diffraction Data (ICDD).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信