{"title":"RDN-NET: A Deep Learning Framework for Asthma Prediction and Classification Using Recurrent Deep Neural Network","authors":"Md.ASIM Iqbal, K. Devarajan, S. M. Ahmed","doi":"10.1142/s0219467824500505","DOIUrl":null,"url":null,"abstract":"Asthma is the one of the crucial types of disease, which causes the huge deaths of all age groups around the world. So, early detection and prevention of asthma disease can save numerous lives and are also helpful to the medical field. But the conventional machine learning methods have failed to detect the asthma from the speech signals and resulted in low accuracy. Thus, this paper presented the advanced deep learning-based asthma prediction and classification using recurrent deep neural network (RDN-Net). Initially, speech signals are preprocessed by using minimum mean-square-error short-time spectral amplitude (MMSE-STSA) method, which is used to remove the noises and enhances the speech properties. Then, improved Ripplet-II Transform (IR2T) is used to extract disease-dependent and disease-specific features. Then, modified gray wolf optimization (MGWO)-based bio-optimization approach is used to select the optimal features by hunting process. Finally, RDN-Net is used to predict the asthma disease present from speech signal and classifies the type as either wheeze, crackle or normal. The simulations are carried out on real-time COSWARA dataset and the proposed method resulted in better performance for all metrics as compared to the state-of-the-art approaches.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467824500505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Asthma is the one of the crucial types of disease, which causes the huge deaths of all age groups around the world. So, early detection and prevention of asthma disease can save numerous lives and are also helpful to the medical field. But the conventional machine learning methods have failed to detect the asthma from the speech signals and resulted in low accuracy. Thus, this paper presented the advanced deep learning-based asthma prediction and classification using recurrent deep neural network (RDN-Net). Initially, speech signals are preprocessed by using minimum mean-square-error short-time spectral amplitude (MMSE-STSA) method, which is used to remove the noises and enhances the speech properties. Then, improved Ripplet-II Transform (IR2T) is used to extract disease-dependent and disease-specific features. Then, modified gray wolf optimization (MGWO)-based bio-optimization approach is used to select the optimal features by hunting process. Finally, RDN-Net is used to predict the asthma disease present from speech signal and classifies the type as either wheeze, crackle or normal. The simulations are carried out on real-time COSWARA dataset and the proposed method resulted in better performance for all metrics as compared to the state-of-the-art approaches.