Identities among higher genus modular graph tensors

IF 1.2 3区 数学 Q1 MATHEMATICS
E. D'hoker, O. Schlotterer
{"title":"Identities among higher genus modular graph tensors","authors":"E. D'hoker, O. Schlotterer","doi":"10.4310/cntp.2022.v16.n1.a2","DOIUrl":null,"url":null,"abstract":"Higher genus modular graph tensors map Feynman graphs to functions on the Torelli space of genus-$h$ compact Riemann surfaces which transform as tensors under the modular group $Sp(2h , \\mathbb Z)$, thereby generalizing a construction of Kawazumi. An infinite family of algebraic identities between one-loop and tree-level modular graph tensors are proven for arbitrary genus and arbitrary tensorial rank. We also derive a family of identities that apply to modular graph tensors of higher loop order.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2022.v16.n1.a2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

Abstract

Higher genus modular graph tensors map Feynman graphs to functions on the Torelli space of genus-$h$ compact Riemann surfaces which transform as tensors under the modular group $Sp(2h , \mathbb Z)$, thereby generalizing a construction of Kawazumi. An infinite family of algebraic identities between one-loop and tree-level modular graph tensors are proven for arbitrary genus and arbitrary tensorial rank. We also derive a family of identities that apply to modular graph tensors of higher loop order.
高亏格模图张量之间的恒等式
高亏格模图张量将Feynman图映射到亏格-$h$紧Riemann曲面的Torelli空间上的函数,这些函数在模群$Sp(2h,\mathbb Z)$下变换为张量,从而推广了Kawazumi的一个构造。对于任意亏格和任意张量秩,证明了一个环与树级模图张量之间的代数恒等式的无穷大族。我们还导出了一个适用于高循环阶模图张量的恒等式族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信