Currents on cusped hyperbolic surfaces and denseness property

Pub Date : 2020-11-27 DOI:10.4171/GGD/688
Dounnu Sasaki
{"title":"Currents on cusped hyperbolic surfaces and denseness property","authors":"Dounnu Sasaki","doi":"10.4171/GGD/688","DOIUrl":null,"url":null,"abstract":"The space $\\mathrm{GC} (\\Sigma)$ of geodesic currents on a hyperbolic surface $\\Sigma$ can be considered as a completion of the set of weighted closed geodesics on $\\Sigma$ when $\\Sigma$ is compact, since the set of rational geodesic currents on $\\Sigma$, which correspond to weighted closed geodesics, is a dense subset of $\\mathrm{GC}(\\Sigma )$. We prove that even when $\\Sigma$ is a cusped hyperbolic surface with finite area, $\\mathrm{GC}(\\Sigma )$ has the denseness property of rational geodesic currents, which correspond not only to weighted closed geodesics on $\\Sigma$ but also to weighted geodesics connecting two cusps. In addition, we present an example in which a sequence of weighted closed geodesics converges to a geodesic connecting two cusps, which is an obstruction for the intersection number to extend continuously to $\\mathrm{GC}(\\Sigma )$. To construct the example, we use the notion of subset currents. Finally, we prove that the space of subset currents on a cusped hyperbolic surface has the denseness property of rational subset currents.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/GGD/688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The space $\mathrm{GC} (\Sigma)$ of geodesic currents on a hyperbolic surface $\Sigma$ can be considered as a completion of the set of weighted closed geodesics on $\Sigma$ when $\Sigma$ is compact, since the set of rational geodesic currents on $\Sigma$, which correspond to weighted closed geodesics, is a dense subset of $\mathrm{GC}(\Sigma )$. We prove that even when $\Sigma$ is a cusped hyperbolic surface with finite area, $\mathrm{GC}(\Sigma )$ has the denseness property of rational geodesic currents, which correspond not only to weighted closed geodesics on $\Sigma$ but also to weighted geodesics connecting two cusps. In addition, we present an example in which a sequence of weighted closed geodesics converges to a geodesic connecting two cusps, which is an obstruction for the intersection number to extend continuously to $\mathrm{GC}(\Sigma )$. To construct the example, we use the notion of subset currents. Finally, we prove that the space of subset currents on a cusped hyperbolic surface has the denseness property of rational subset currents.
分享
查看原文
尖角双曲表面上的电流和密度性质
双曲面$\Sigma$上的测地流的空间$\mathrm{GC}(\Sigma)$可以被认为是$\Sigma上的加权闭测地线集的完备集,当$\Sigma-$是紧致的时,因为$\Sigma.$上的有理测地流集对应于加权闭测地线,是$\mathrm{GC}的稠密子集。我们证明,即使$\Sigma$是一个有限面积的尖双曲面,$\mathrm{GC}(\Sigma)$也具有有理测地流的稠密性,它不仅对应于$\Sigma上的加权闭测地,而且对应于连接两个尖的加权测地。此外,我们还举了一个例子,其中一系列加权闭合测地线收敛于连接两个尖端的测地线,这是交集数连续扩展到$\mathrm{GC}(\Sigma)$的障碍。为了构建这个例子,我们使用了子集电流的概念。最后,我们证明了有尖双曲面上子集流的空间具有有理子集流的稠密性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信