{"title":"Currents on cusped hyperbolic surfaces and denseness property","authors":"Dounnu Sasaki","doi":"10.4171/GGD/688","DOIUrl":null,"url":null,"abstract":"The space $\\mathrm{GC} (\\Sigma)$ of geodesic currents on a hyperbolic surface $\\Sigma$ can be considered as a completion of the set of weighted closed geodesics on $\\Sigma$ when $\\Sigma$ is compact, since the set of rational geodesic currents on $\\Sigma$, which correspond to weighted closed geodesics, is a dense subset of $\\mathrm{GC}(\\Sigma )$. We prove that even when $\\Sigma$ is a cusped hyperbolic surface with finite area, $\\mathrm{GC}(\\Sigma )$ has the denseness property of rational geodesic currents, which correspond not only to weighted closed geodesics on $\\Sigma$ but also to weighted geodesics connecting two cusps. In addition, we present an example in which a sequence of weighted closed geodesics converges to a geodesic connecting two cusps, which is an obstruction for the intersection number to extend continuously to $\\mathrm{GC}(\\Sigma )$. To construct the example, we use the notion of subset currents. Finally, we prove that the space of subset currents on a cusped hyperbolic surface has the denseness property of rational subset currents.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/GGD/688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The space $\mathrm{GC} (\Sigma)$ of geodesic currents on a hyperbolic surface $\Sigma$ can be considered as a completion of the set of weighted closed geodesics on $\Sigma$ when $\Sigma$ is compact, since the set of rational geodesic currents on $\Sigma$, which correspond to weighted closed geodesics, is a dense subset of $\mathrm{GC}(\Sigma )$. We prove that even when $\Sigma$ is a cusped hyperbolic surface with finite area, $\mathrm{GC}(\Sigma )$ has the denseness property of rational geodesic currents, which correspond not only to weighted closed geodesics on $\Sigma$ but also to weighted geodesics connecting two cusps. In addition, we present an example in which a sequence of weighted closed geodesics converges to a geodesic connecting two cusps, which is an obstruction for the intersection number to extend continuously to $\mathrm{GC}(\Sigma )$. To construct the example, we use the notion of subset currents. Finally, we prove that the space of subset currents on a cusped hyperbolic surface has the denseness property of rational subset currents.