{"title":"Stress-induced martensitic transformation in metastable austenite grains during nanoindentation investigation","authors":"B. He, X. Shang","doi":"10.1080/09500839.2021.1936258","DOIUrl":null,"url":null,"abstract":"ABSTRACT In general, the formation of martensite in the metastable austenite grains in steels during nanoindentation investigations is believed to be induced by strain as the plastic deformation of austenite takes place prior to the martensitic transformation. However, it is not clear whether the formation of martensite occurs without the prior initiation of plasticity (stress-induced martensitic transformation) during nanoindentation measurement. The present work demonstrates that the martensitic transformation can be triggered during elastic deformation of austenite under an ultralow load when the indenter is close to the annealing twin boundaries. The indentation pressure interacts with the martensite transformation strain, providing the mechanical interaction energy to overcome the nucleation barrier of the martensite embryo. The present work suggests that the annealing twin boundaries can also serve as the nucleation sites of martensite and the stress-induced martensitic transformation is possible during nanoindentation investigation.","PeriodicalId":19860,"journal":{"name":"Philosophical Magazine Letters","volume":"101 1","pages":"417 - 431"},"PeriodicalIF":1.2000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09500839.2021.1936258","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09500839.2021.1936258","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
ABSTRACT In general, the formation of martensite in the metastable austenite grains in steels during nanoindentation investigations is believed to be induced by strain as the plastic deformation of austenite takes place prior to the martensitic transformation. However, it is not clear whether the formation of martensite occurs without the prior initiation of plasticity (stress-induced martensitic transformation) during nanoindentation measurement. The present work demonstrates that the martensitic transformation can be triggered during elastic deformation of austenite under an ultralow load when the indenter is close to the annealing twin boundaries. The indentation pressure interacts with the martensite transformation strain, providing the mechanical interaction energy to overcome the nucleation barrier of the martensite embryo. The present work suggests that the annealing twin boundaries can also serve as the nucleation sites of martensite and the stress-induced martensitic transformation is possible during nanoindentation investigation.
期刊介绍:
Philosophical Magazine Letters is the rapid communications part of the highly respected Philosophical Magazine, which was first published in 1798. Its Editors consider for publication short and timely contributions in the field of condensed matter describing original results, theories and concepts relating to the structure and properties of crystalline materials, ceramics, polymers, glasses, amorphous films, composites and soft matter. Articles emphasizing experimental, theoretical and modelling studies on solids, especially those that interpret behaviour on a microscopic, atomic or electronic scale, are particularly appropriate.
Manuscripts are considered on the strict condition that they have been submitted only to Philosophical Magazine Letters , that they have not been published already, and that they are not under consideration for publication elsewhere.