On the nonlinear perturbations of self-adjoint operators

IF 3.2 1区 数学 Q1 MATHEMATICS
Michal Beldzinski, M. Galewski, Witold Majdak
{"title":"On the nonlinear perturbations of self-adjoint operators","authors":"Michal Beldzinski, M. Galewski, Witold Majdak","doi":"10.1515/anona-2022-0235","DOIUrl":null,"url":null,"abstract":"Abstract Using elements of the theory of linear operators in Hilbert spaces and monotonicity tools we obtain the existence and uniqueness results for a wide class of nonlinear problems driven by the equation T x = N ( x ) Tx=N\\left(x) , where T T is a self-adjoint operator in a real Hilbert space ℋ {\\mathcal{ {\\mathcal H} }} and N N is a nonlinear perturbation. Both potential and nonpotential perturbations are considered. This approach is an extension of the results known for elliptic operators.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"11 1","pages":"1117 - 1133"},"PeriodicalIF":3.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0235","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Using elements of the theory of linear operators in Hilbert spaces and monotonicity tools we obtain the existence and uniqueness results for a wide class of nonlinear problems driven by the equation T x = N ( x ) Tx=N\left(x) , where T T is a self-adjoint operator in a real Hilbert space ℋ {\mathcal{ {\mathcal H} }} and N N is a nonlinear perturbation. Both potential and nonpotential perturbations are considered. This approach is an extension of the results known for elliptic operators.
关于自伴随算子的非线性扰动
摘要利用Hilbert空间线性算子理论的元素和单调性工具,得到了一类由方程Tx=N (x) Tx=N\left(x)驱动的非线性问题的存在唯一性结果,其中T T是实Hilbert空间H {\mathcal{{\mathcal H}}}中的自伴随算子,N N是非线性摄动。考虑了势和非势扰动。这种方法是对椭圆算子已知结果的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
6.00
自引率
9.50%
发文量
60
审稿时长
30 weeks
期刊介绍: Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信