Early Warning of Companies' Credit Risk Based on Machine Learning

IF 0.8 Q4 Computer Science
Benyan Tan, Yujie Lin
{"title":"Early Warning of Companies' Credit Risk Based on Machine Learning","authors":"Benyan Tan, Yujie Lin","doi":"10.4018/ijitsa.324067","DOIUrl":null,"url":null,"abstract":"With the advent of the big data era, information barriers are gradually being broken down and credit has become a key factor of company operations. The lack of company credit has greatly and negatively impacted the social economy, which has triggered considerable research on company credit. In this article, a credit risk warning model based on the XGBoost-SHAP algorithm is proposed that can accurately assess the credit risk of a company. The degree of influence of the characteristics of a company's credit risk and the warning threshold of important characteristics are obtained based on the model output. Finally, a comparison with several other machine learning algorithms showed that the XGBoost-SHAP model achieved the highest early warning accuracy and the most comprehensive explanatory output results. The experimental results show that the method can effectively provide a warning of the credit risk of a company based on the historical performance of the company's historical characteristics data. This method provides positive guidance for companies and financial institutions.","PeriodicalId":52019,"journal":{"name":"International Journal of Information Technologies and Systems Approach","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technologies and Systems Approach","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijitsa.324067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

With the advent of the big data era, information barriers are gradually being broken down and credit has become a key factor of company operations. The lack of company credit has greatly and negatively impacted the social economy, which has triggered considerable research on company credit. In this article, a credit risk warning model based on the XGBoost-SHAP algorithm is proposed that can accurately assess the credit risk of a company. The degree of influence of the characteristics of a company's credit risk and the warning threshold of important characteristics are obtained based on the model output. Finally, a comparison with several other machine learning algorithms showed that the XGBoost-SHAP model achieved the highest early warning accuracy and the most comprehensive explanatory output results. The experimental results show that the method can effectively provide a warning of the credit risk of a company based on the historical performance of the company's historical characteristics data. This method provides positive guidance for companies and financial institutions.
基于机器学习的企业信用风险预警
随着大数据时代的到来,信息壁垒逐渐被打破,信用已成为公司运营的关键因素。公司信用的缺失对社会经济产生了巨大的负面影响,引发了对公司信用的大量研究。本文提出了一种基于XGBoost SHAP算法的信用风险预警模型,可以准确评估企业的信用风险。基于模型输出,得到了企业信用风险特征的影响程度和重要特征的预警阈值。最后,与其他几种机器学习算法的比较表明,XGBoost SHAP模型实现了最高的预警精度和最全面的解释输出结果。实验结果表明,该方法可以有效地基于公司历史业绩的历史特征数据对公司的信用风险进行预警。这种方法为企业和金融机构提供了积极的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
12.50%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信