Well-posedness of the initial-boundary value problems for the time-fractional degenerate diffusion equations

IF 0.7 Q2 MATHEMATICS
A. Smadiyeva
{"title":"Well-posedness of the initial-boundary value problems for the time-fractional degenerate diffusion equations","authors":"A. Smadiyeva","doi":"10.31489/2022m3/145-151","DOIUrl":null,"url":null,"abstract":"This paper deals with the solving of initial-boundary value problems for the one-dimensional linear timefractional diffusion equations with time-degenerate diffusive coefficients t^β with β > 1 − α. The solutions to initial-boundary value problems for the one-dimensional time-fractional degenerate diffusion equations with Riemann-Liouville fractional integral I^1−α_0+,t of order α ∈ (0, 1) and with Riemann-Liouville fractional derivative D^α_0+,t of order α ∈ (0, 1) in the variable, are shown. The solutions to these fractional diffusive equations are presented using the Kilbas-Saigo function Eα,m,l(z). The solution to the problems is discovered by the method of separation of variables, through finding two problems with one variable. Rather, through finding a solution to the fractional problem depending on the parameter t, with the Dirichlet or Neumann boundary conditions. The solution to the Sturm-Liouville problem depends on the variable x with the initial fractional-integral Riemann-Liouville condition. The existence and uniqueness of the solution to the problem are confirmed. The convergence of the solution was evidenced using the estimate for the KilbasSaigo function E_α,m,l(z) from and by Parseval’s identity.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2022m3/145-151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

This paper deals with the solving of initial-boundary value problems for the one-dimensional linear timefractional diffusion equations with time-degenerate diffusive coefficients t^β with β > 1 − α. The solutions to initial-boundary value problems for the one-dimensional time-fractional degenerate diffusion equations with Riemann-Liouville fractional integral I^1−α_0+,t of order α ∈ (0, 1) and with Riemann-Liouville fractional derivative D^α_0+,t of order α ∈ (0, 1) in the variable, are shown. The solutions to these fractional diffusive equations are presented using the Kilbas-Saigo function Eα,m,l(z). The solution to the problems is discovered by the method of separation of variables, through finding two problems with one variable. Rather, through finding a solution to the fractional problem depending on the parameter t, with the Dirichlet or Neumann boundary conditions. The solution to the Sturm-Liouville problem depends on the variable x with the initial fractional-integral Riemann-Liouville condition. The existence and uniqueness of the solution to the problem are confirmed. The convergence of the solution was evidenced using the estimate for the KilbasSaigo function E_α,m,l(z) from and by Parseval’s identity.
时间分数退化扩散方程初边值问题的适定性
本文研究了具有时间退化扩散系数t^β且β>1−α的一维线性分数阶扩散方程的初边值问题。给出了一维时间分数阶退化扩散方程初边值问题的解,其中Riemann-Liouville分数阶积分I^1-α_0+,t阶为α∈(0,1),变量中Riemann-刘分数阶导数D^α_0+、t阶为a∈(0,1)。利用Kilbas-Saigo函数Eα,m,l(z)给出了这些分数阶扩散方程的解。通过用一个变量找到两个问题,用变量分离的方法找到问题的解。相反,通过在Dirichlet或Neumann边界条件下找到取决于参数t的分数问题的解。Sturm-Liouville问题的解取决于具有初始分数积分Riemann-Liouville条件的变量x。证实了问题解的存在性和唯一性。使用来自和通过Parseval恒等式的KilbasSaigo函数E_α,m,l(z)的估计来证明解的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信