Potentials of NaOH modified agricultural waste of sorghum bagasse for lead (II) removal from aqueous solution: kinetics, isotherm and thermodynamic studies
A. Y. Afandi, Y. Kurniawan, Bernadeta Ayu Widyaningrum, Tamara Matilda, D. W. Indriani, Devi Indrasari Mustopa Putri, H. Darmokoesoemo, H. Kusuma
{"title":"Potentials of NaOH modified agricultural waste of sorghum bagasse for lead (II) removal from aqueous solution: kinetics, isotherm and thermodynamic studies","authors":"A. Y. Afandi, Y. Kurniawan, Bernadeta Ayu Widyaningrum, Tamara Matilda, D. W. Indriani, Devi Indrasari Mustopa Putri, H. Darmokoesoemo, H. Kusuma","doi":"10.1080/02757540.2023.2206395","DOIUrl":null,"url":null,"abstract":"ABSTRACT The removal of lead from water and wastewater is a serious term for protecting the public and the environmental. Herein, an agriculture waste of sorghum bagasse modified with NaOH was used to adsorb Pb(II) from an aqueous solution. The modified sorghum bagasse (MSB) was characterised by field emission scanning electron microscopy (FESEM), Brunauer–Emmett–Teller (BET) method and Fourier transform infrared spectroscopy (FTIR). MSB with NaOH shows smoother, increasing porosity and pore size (mesopore). In a batch system, the parameter adsorption was investigated. The adsorption of Pb(II) by the adsorbents was optimum at pH 5.0, contact time: 15 min, adsorbent dosage: 6 g L−1 and initial concentration: 80 mg L−1. The pseudo second-order model was suitable to describe the kinetic of the process with the diffusion model of the Elovich model. Meanwhile, the adsorption isotherm model was suitable with the Langmuir model and gives a maximum adsorption capacity (qmax) 12.29 mg g−1. The Gibbs free energy was negative, and the enthalpy was negative, indicating the adsorption was a spontaneous and exothermic process. These results indicated that the MSB had potentially become an efficient, sustainable and low-cost adsorbent for Pb(II) uptake from an aqueous solution.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/02757540.2023.2206395","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT The removal of lead from water and wastewater is a serious term for protecting the public and the environmental. Herein, an agriculture waste of sorghum bagasse modified with NaOH was used to adsorb Pb(II) from an aqueous solution. The modified sorghum bagasse (MSB) was characterised by field emission scanning electron microscopy (FESEM), Brunauer–Emmett–Teller (BET) method and Fourier transform infrared spectroscopy (FTIR). MSB with NaOH shows smoother, increasing porosity and pore size (mesopore). In a batch system, the parameter adsorption was investigated. The adsorption of Pb(II) by the adsorbents was optimum at pH 5.0, contact time: 15 min, adsorbent dosage: 6 g L−1 and initial concentration: 80 mg L−1. The pseudo second-order model was suitable to describe the kinetic of the process with the diffusion model of the Elovich model. Meanwhile, the adsorption isotherm model was suitable with the Langmuir model and gives a maximum adsorption capacity (qmax) 12.29 mg g−1. The Gibbs free energy was negative, and the enthalpy was negative, indicating the adsorption was a spontaneous and exothermic process. These results indicated that the MSB had potentially become an efficient, sustainable and low-cost adsorbent for Pb(II) uptake from an aqueous solution.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.