Score-driven location plus scale models: asymptotic theory and an application to forecasting Dow Jones volatility

IF 0.7 4区 经济学 Q3 ECONOMICS
Szabolcs Blazsek, A. Escribano, Adrián Licht
{"title":"Score-driven location plus scale models: asymptotic theory and an application to forecasting Dow Jones volatility","authors":"Szabolcs Blazsek, A. Escribano, Adrián Licht","doi":"10.1515/snde-2021-0083","DOIUrl":null,"url":null,"abstract":"Abstract We present the Beta-t-QVAR (quasi-vector autoregression) model for the joint modelling of score-driven location plus scale of strictly stationary and ergodic variables. Beta-t-QVAR is an extension of Beta-t-EGARCH (exponential generalized autoregressive conditional heteroscedasticity) and Beta-t-EGARCH-M (Beta-t-EGARCH-in-mean). We prove the asymptotic properties of the maximum likelihood (ML) estimator for correctly specified Beta-t-QVAR models. We use Dow Jones Industrial Average (DJIA) data for the period of 1985–2020. We find that the volatility forecasting accuracy of Beta-t-QVAR is superior to the volatility forecasting accuracies of Beta-t-EGARCH, Beta-t-EGARCH-M, A-PARCH (asymmetric power ARCH), and GARCH for the period of 2010–2020.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/snde-2021-0083","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract We present the Beta-t-QVAR (quasi-vector autoregression) model for the joint modelling of score-driven location plus scale of strictly stationary and ergodic variables. Beta-t-QVAR is an extension of Beta-t-EGARCH (exponential generalized autoregressive conditional heteroscedasticity) and Beta-t-EGARCH-M (Beta-t-EGARCH-in-mean). We prove the asymptotic properties of the maximum likelihood (ML) estimator for correctly specified Beta-t-QVAR models. We use Dow Jones Industrial Average (DJIA) data for the period of 1985–2020. We find that the volatility forecasting accuracy of Beta-t-QVAR is superior to the volatility forecasting accuracies of Beta-t-EGARCH, Beta-t-EGARCH-M, A-PARCH (asymmetric power ARCH), and GARCH for the period of 2010–2020.
分数驱动的位置加规模模型:渐近理论及其在道琼斯波动预测中的应用
摘要我们提出了Beta-t-QVAR(准向量自回归)模型,用于对严格平稳和遍历变量的分数驱动位置加尺度的联合建模。Beta-t-QVAR是Beta-t-EGARCH(指数广义自回归条件异方差)和Beta-t-EG ARCH-M(Beta-t-EGARCH-in-man)的扩展。我们证明了正确指定的Beta-t-QVAR模型的最大似然(ML)估计量的渐近性质。我们使用道琼斯工业平均指数(DJIA)1985-2020年的数据。我们发现,在2010-2020年期间,Beta-t-QVAR的波动率预测精度优于Beta-t-EGARCH、Beta-t-EGARCH-M、A-PARCH(不对称功率ARCH)和GARCH的波动率预报精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
34
期刊介绍: Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信