Intelligent Stock Prediction: A Neural Network Approach

IF 0.6 Q4 BUSINESS, FINANCE
M. H. Shahrour, Mostafa Dekmak
{"title":"Intelligent Stock Prediction: A Neural Network Approach","authors":"M. H. Shahrour, Mostafa Dekmak","doi":"10.1142/s2424786322500165","DOIUrl":null,"url":null,"abstract":"Ever since the existence of financial markets, predicting stocks’ movement has been crucial for investors in order to increase their investment returns. Despite the plethora of research, the outstanding literature provides mixed results concerning the choice of model. Are Artificial Intelligence systems valid techniques in predicting stock prices? Do deep learning models outperform machine learning models? Through developing different machine and deep learning models, the overall findings reveal that deep learning techniques (i.e., ANN and LSTM) outperform machine learning techniques (i.e., SVR) in price prediction. The results are validated using different accuracy measures.","PeriodicalId":54088,"journal":{"name":"International Journal of Financial Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Financial Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424786322500165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

Ever since the existence of financial markets, predicting stocks’ movement has been crucial for investors in order to increase their investment returns. Despite the plethora of research, the outstanding literature provides mixed results concerning the choice of model. Are Artificial Intelligence systems valid techniques in predicting stock prices? Do deep learning models outperform machine learning models? Through developing different machine and deep learning models, the overall findings reveal that deep learning techniques (i.e., ANN and LSTM) outperform machine learning techniques (i.e., SVR) in price prediction. The results are validated using different accuracy measures.
智能股票预测:一种神经网络方法
自金融市场存在以来,预测股票走势对投资者提高投资回报至关重要。尽管有过多的研究,但优秀的文献在模型的选择方面提供了喜忧参半的结果。人工智能系统在预测股价方面是否有效?深度学习模型是否优于机器学习模型?通过开发不同的机器和深度学习模型,总体研究结果表明,深度学习技术(即ANN和LSTM)在价格预测方面优于机器学习技术(如SVR)。使用不同的精度测量对结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信