{"title":"Bayesian model for sustainable, resilient, and cost-effective concrete mixtures","authors":"G. Vasudevan, D. Trejo","doi":"10.1080/23789689.2023.2188348","DOIUrl":null,"url":null,"abstract":"ABSTRACT This work develops a Bayesian model that can be used to proportion sustainable, resilient, and cost-effective concrete mixtures based on stakeholder preferences. Traditionally, the decision-making process for proportioning concrete mixtures is centered around meeting target specifications, such as slump and compressive strength, and attributes such as sustainability and durability are given minimal importance. However, in the global push towards green infrastructure, sustainability plays a major role and must be considered to the same degree as engineering attributes. The model developed herein accounts for embodied carbon footprint, cost, and time to corrosion initiation, apart from the target specifications commonly used to proportion concrete mixtures. The developed model is demonstrated through two case studies: one targeting the average industrial embodied carbon footprint for a concrete mixture and the other targeting a reduction of 40% from the industry’s carbon footprint average. This model can also be used to perform data visualization and sensitivity analyses.","PeriodicalId":45395,"journal":{"name":"Sustainable and Resilient Infrastructure","volume":"8 1","pages":"325 - 339"},"PeriodicalIF":2.7000,"publicationDate":"2023-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable and Resilient Infrastructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23789689.2023.2188348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT This work develops a Bayesian model that can be used to proportion sustainable, resilient, and cost-effective concrete mixtures based on stakeholder preferences. Traditionally, the decision-making process for proportioning concrete mixtures is centered around meeting target specifications, such as slump and compressive strength, and attributes such as sustainability and durability are given minimal importance. However, in the global push towards green infrastructure, sustainability plays a major role and must be considered to the same degree as engineering attributes. The model developed herein accounts for embodied carbon footprint, cost, and time to corrosion initiation, apart from the target specifications commonly used to proportion concrete mixtures. The developed model is demonstrated through two case studies: one targeting the average industrial embodied carbon footprint for a concrete mixture and the other targeting a reduction of 40% from the industry’s carbon footprint average. This model can also be used to perform data visualization and sensitivity analyses.
期刊介绍:
Sustainable and Resilient Infrastructure is an interdisciplinary journal that focuses on the sustainable development of resilient communities.
Sustainability is defined in relation to the ability of infrastructure to address the needs of the present without sacrificing the ability of future generations to meet their needs. Resilience is considered in relation to both natural hazards (like earthquakes, tsunami, hurricanes, cyclones, tornado, flooding and drought) and anthropogenic hazards (like human errors and malevolent attacks.) Resilience is taken to depend both on the performance of the built and modified natural environment and on the contextual characteristics of social, economic and political institutions. Sustainability and resilience are considered both for physical and non-physical infrastructure.