Digital Watermarking using Grasshopper Optimization Algorithm

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Satender Sharma, U. Chauhan, Ruqaiya Khanam, Krishnavir Singh
{"title":"Digital Watermarking using Grasshopper Optimization Algorithm","authors":"Satender Sharma, U. Chauhan, Ruqaiya Khanam, Krishnavir Singh","doi":"10.1515/comp-2019-0023","DOIUrl":null,"url":null,"abstract":"Abstract The advancement in computer science technology has led to some serious concerns about the piracy and copyright of digital content. Digital watermarking technique is widely used for copyright protection and other similar applications. In this paper, a technique for digital watermarking based on Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT), and Grasshopper Optimization Algorithm (GOA) is proposed. The method computes the DWT of the cover image to obtain the sub-components of the image. The subcomponent is converted to frequency domain using DCT. The challenge is to find the optimal scaling factor to be used for watermarking. The authors have designed a GOA based technique that finds the optimized scaling factor and the coefficient for embedding the watermark. GOA makes the watermark undetectable and is invisible in the cover image. The watermark image is embedded in the cover image using these coefficients. The extraction of watermark from the cover image is done by using inverse DCT and DWT. The proposed method is compared with the other state of the art methods. The effectiveness of the proposed method is computed using Peak Signal to Noise Ratio (PSNR), Normalized Cross Correlation (NCC) and Image Fidelity (IF). The proposed method outperforms the other methods and can be effectively used for practical digital watermarking.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/comp-2019-0023","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/comp-2019-0023","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract The advancement in computer science technology has led to some serious concerns about the piracy and copyright of digital content. Digital watermarking technique is widely used for copyright protection and other similar applications. In this paper, a technique for digital watermarking based on Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT), and Grasshopper Optimization Algorithm (GOA) is proposed. The method computes the DWT of the cover image to obtain the sub-components of the image. The subcomponent is converted to frequency domain using DCT. The challenge is to find the optimal scaling factor to be used for watermarking. The authors have designed a GOA based technique that finds the optimized scaling factor and the coefficient for embedding the watermark. GOA makes the watermark undetectable and is invisible in the cover image. The watermark image is embedded in the cover image using these coefficients. The extraction of watermark from the cover image is done by using inverse DCT and DWT. The proposed method is compared with the other state of the art methods. The effectiveness of the proposed method is computed using Peak Signal to Noise Ratio (PSNR), Normalized Cross Correlation (NCC) and Image Fidelity (IF). The proposed method outperforms the other methods and can be effectively used for practical digital watermarking.
基于Grasshopper优化算法的数字水印
摘要计算机科学技术的进步引起了人们对数字内容盗版和版权的严重关注。数字水印技术被广泛用于版权保护和其他类似的应用。本文提出了一种基于离散余弦变换(DCT)、离散小波变换(DWT)和Grasshopper优化算法(GOA)的数字水印技术。该方法计算封面图像的DWT,得到图像的子分量。使用DCT将子分量转换到频域。挑战在于找到用于水印的最佳比例因子。作者设计了一种基于GOA的技术,该技术可以找到最优的比例因子和嵌入水印的系数。GOA使水印无法检测,并且在封面图像中不可见。使用这些系数将水印图像嵌入到封面图像中。利用逆DCT和DWT对封面图像进行水印提取。将所提出的方法与其他现有技术的方法进行比较。使用峰值信噪比(PSNR)、归一化互相关(NCC)和图像保真度(IF)来计算所提出方法的有效性。所提出的方法优于其他方法,可以有效地用于实际的数字水印。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信