S. Yakush, O. Korobeinichev, A. Shmakov, T. Bolshova, S. Trubachev
{"title":"A reduced kinetic scheme for methyl methacrylate gas-phase combustion","authors":"S. Yakush, O. Korobeinichev, A. Shmakov, T. Bolshova, S. Trubachev","doi":"10.1080/13647830.2022.2132015","DOIUrl":null,"url":null,"abstract":"Gas-phase combustion of methylmethacrylate (MMA) monomer is an essential stage of solid polymethylmethacrylate (PMMA) combustion, which is of interest in many applications. A skeletal kinetic scheme for MMA combustion in air is proposed including 44 irreversible elementary reactions for 29 species. The mechanism is derived from the reduced kinetic scheme for MMA oxidation comprised of 263 reactions for 66 components. In this work, the mechanism predictive capabilities are demonstrated by solving the self-ignition problem, as well as the premixed flame propagation problem for MMA-air mixtures. It is shown that the skeletal mechanism overpredicts the ignition delay times due to significant simplification of the MMA decomposition stage reaction pathways. The flame propagation speed is predicted reasonably for lean and nearly-stoichiometric mixtures, but overpredicted for fuel-rich mixtures. Also, a diffusion flame representing the cup burner of liquid MMA is simulated in two-dimensional statement of the problem, the results are shown to agree well with the measurements and numerical simulations performed earlier on the basis of a detailed kinetic scheme. The skeletal mechanism can be used in the numerical simulations of gas-phase combustion of MMA, including the problems of flame propagation over the solid PMMA polymer.","PeriodicalId":50665,"journal":{"name":"Combustion Theory and Modelling","volume":"27 1","pages":"139 - 152"},"PeriodicalIF":1.9000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion Theory and Modelling","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/13647830.2022.2132015","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
Gas-phase combustion of methylmethacrylate (MMA) monomer is an essential stage of solid polymethylmethacrylate (PMMA) combustion, which is of interest in many applications. A skeletal kinetic scheme for MMA combustion in air is proposed including 44 irreversible elementary reactions for 29 species. The mechanism is derived from the reduced kinetic scheme for MMA oxidation comprised of 263 reactions for 66 components. In this work, the mechanism predictive capabilities are demonstrated by solving the self-ignition problem, as well as the premixed flame propagation problem for MMA-air mixtures. It is shown that the skeletal mechanism overpredicts the ignition delay times due to significant simplification of the MMA decomposition stage reaction pathways. The flame propagation speed is predicted reasonably for lean and nearly-stoichiometric mixtures, but overpredicted for fuel-rich mixtures. Also, a diffusion flame representing the cup burner of liquid MMA is simulated in two-dimensional statement of the problem, the results are shown to agree well with the measurements and numerical simulations performed earlier on the basis of a detailed kinetic scheme. The skeletal mechanism can be used in the numerical simulations of gas-phase combustion of MMA, including the problems of flame propagation over the solid PMMA polymer.
期刊介绍:
Combustion Theory and Modelling is a leading international journal devoted to the application of mathematical modelling, numerical simulation and experimental techniques to the study of combustion. Articles can cover a wide range of topics, such as: premixed laminar flames, laminar diffusion flames, turbulent combustion, fires, chemical kinetics, pollutant formation, microgravity, materials synthesis, chemical vapour deposition, catalysis, droplet and spray combustion, detonation dynamics, thermal explosions, ignition, energetic materials and propellants, burners and engine combustion. A diverse spectrum of mathematical methods may also be used, including large scale numerical simulation, hybrid computational schemes, front tracking, adaptive mesh refinement, optimized parallel computation, asymptotic methods and singular perturbation techniques, bifurcation theory, optimization methods, dynamical systems theory, cellular automata and discrete methods and probabilistic and statistical methods. Experimental studies that employ intrusive or nonintrusive diagnostics and are published in the Journal should be closely related to theoretical issues, by highlighting fundamental theoretical questions or by providing a sound basis for comparison with theory.