{"title":"Fitting heavy-tailed mixture models with CVaR constraints","authors":"Giorgi Pertaia, S. Uryasev","doi":"10.1515/demo-2019-0019","DOIUrl":null,"url":null,"abstract":"Abstract Standard methods of fitting finite mixture models take into account the majority of observations in the center of the distribution. This paper considers the case where the decision maker wants to make sure that the tail of the fitted distribution is at least as heavy as the tail of the empirical distribution. For instance, in nuclear engineering, where probability of exceedance (POE) needs to be estimated, it is important to fit correctly tails of the distributions. The goal of this paper is to supplement the standard methodology and to assure an appropriate heaviness of the fitted tails. We consider a new Conditional Value-at-Risk (CVaR) distance between distributions, that is a convex function with respect to weights of the mixture. We have conducted a case study demonstrating e˚ciency of the approach. Weights of mixture are found by minimizing CVaR distance between the mixture and the empirical distribution. We have suggested convex constraints on weights, assuring that the tail of the mixture is as heavy as the tail of empirical distribution.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"7 1","pages":"365 - 374"},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/demo-2019-0019","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2019-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Standard methods of fitting finite mixture models take into account the majority of observations in the center of the distribution. This paper considers the case where the decision maker wants to make sure that the tail of the fitted distribution is at least as heavy as the tail of the empirical distribution. For instance, in nuclear engineering, where probability of exceedance (POE) needs to be estimated, it is important to fit correctly tails of the distributions. The goal of this paper is to supplement the standard methodology and to assure an appropriate heaviness of the fitted tails. We consider a new Conditional Value-at-Risk (CVaR) distance between distributions, that is a convex function with respect to weights of the mixture. We have conducted a case study demonstrating e˚ciency of the approach. Weights of mixture are found by minimizing CVaR distance between the mixture and the empirical distribution. We have suggested convex constraints on weights, assuring that the tail of the mixture is as heavy as the tail of empirical distribution.
期刊介绍:
The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to): -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations