Global existence and exponential decay of strong solutions for the inhomogeneous incompressible Navier–Stokes equations with vacuum

IF 0.6 Q4 MATHEMATICS, APPLIED
Dehua Wang, Z. Ye
{"title":"Global existence and exponential decay of strong solutions for the inhomogeneous incompressible Navier–Stokes equations with vacuum","authors":"Dehua Wang, Z. Ye","doi":"10.4310/maa.2022.v29.n1.a3","DOIUrl":null,"url":null,"abstract":"The inhomogeneous incompressible Navier-Stokes equations with fractional Laplacian dissipations in the multi-dimensional whole space are considered. The existence and uniqueness of global strong solution with vacuum are established for large initial data. The exponential decay-in-time of the strong solution is also obtained, which is different from the homogeneous case. The initial density may have vacuum and even compact support.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/maa.2022.v29.n1.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 6

Abstract

The inhomogeneous incompressible Navier-Stokes equations with fractional Laplacian dissipations in the multi-dimensional whole space are considered. The existence and uniqueness of global strong solution with vacuum are established for large initial data. The exponential decay-in-time of the strong solution is also obtained, which is different from the homogeneous case. The initial density may have vacuum and even compact support.
带真空的非齐次不可压缩Navier-Stokes方程强解的整体存在性和指数衰减
研究了多维整体空间中具有分数阶拉普拉斯耗散的非齐次不可压缩Navier-Stokes方程。对于大初始数据,建立了带真空的全局强解的存在唯一性。得到了与齐次情况不同的强解的指数时间衰减。初始密度可以是真空的,甚至是致密的支撑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods and applications of analysis
Methods and applications of analysis MATHEMATICS, APPLIED-
自引率
33.30%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信