A real analyticity result for symmetric functions of the eigenvalues of a quasiperiodic spectral problem for the Dirichlet Laplacian

IF 0.7 4区 数学 Q2 MATHEMATICS
M. L. Cristoforis, P. Musolino, J. Taskinen
{"title":"A real analyticity result for symmetric functions of the eigenvalues of a quasiperiodic spectral problem for the Dirichlet Laplacian","authors":"M. L. Cristoforis, P. Musolino, J. Taskinen","doi":"10.7900/JOT.2020JUN08.2304","DOIUrl":null,"url":null,"abstract":"As is well known, by the Floquet--Bloch theory for periodic problems, one can transform a spectral Laplace--Dirichlet problem in the plane with a set of periodic perforations into a family of ``model problems'' depending on a parameter η∈[0,2π]2 for quasiperiodic functions in the unit cell with a single perforation. We prove real analyticity results for the eigenvalues of the model problems upon perturbation of the shape of the perforation of the unit~cell.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/JOT.2020JUN08.2304","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

As is well known, by the Floquet--Bloch theory for periodic problems, one can transform a spectral Laplace--Dirichlet problem in the plane with a set of periodic perforations into a family of ``model problems'' depending on a parameter η∈[0,2π]2 for quasiperiodic functions in the unit cell with a single perforation. We prove real analyticity results for the eigenvalues of the model problems upon perturbation of the shape of the perforation of the unit~cell.
Dirichlet Laplacian拟周期谱问题特征值对称函数的实分析结果
众所周知,利用周期问题的Floquet—Bloch理论,可以将具有一组周期穿孔的平面上的谱拉普拉斯—狄利克雷问题转化为具有单个穿孔的准周期函数的一类“模型问题”,该类问题依赖于参数η∈[0,2π]2。我们证明了单元胞穿孔形状扰动下模型问题特征值的实解析性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信