Detection of Depression among Social Media Users with Machine Learning

Q2 Social Sciences
S. M, Arun Raj L, A. A
{"title":"Detection of Depression among Social Media Users with Machine Learning","authors":"S. M, Arun Raj L, A. A","doi":"10.14704/web/v19i1/web19019","DOIUrl":null,"url":null,"abstract":"Mental illnesses are a significant and growing public health concern. They have the potential to tremendously affect a person’s life. Depression, in particular, is one of the major reasons for suicide. In recent times, the popularity of social media websites has burgeoned as they are platforms that facilitate discussion and free-flowing conversation about a plethora of topics. Information and dialogue about subjects like mental health, which are still considered as a taboo in various cultures, are becoming more and more accessible. The objective of this paper is to review and comprehensively compare various previously employed Natural Language Processing techniques for the purpose of classification of social media text posts as those written by depressed individuals. Furthermore, pros, cons, and evaluation metrics of these techniques, along with the challenges faced and future directions in this area of research are also summarized.","PeriodicalId":35441,"journal":{"name":"Webology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Webology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14704/web/v19i1/web19019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

Mental illnesses are a significant and growing public health concern. They have the potential to tremendously affect a person’s life. Depression, in particular, is one of the major reasons for suicide. In recent times, the popularity of social media websites has burgeoned as they are platforms that facilitate discussion and free-flowing conversation about a plethora of topics. Information and dialogue about subjects like mental health, which are still considered as a taboo in various cultures, are becoming more and more accessible. The objective of this paper is to review and comprehensively compare various previously employed Natural Language Processing techniques for the purpose of classification of social media text posts as those written by depressed individuals. Furthermore, pros, cons, and evaluation metrics of these techniques, along with the challenges faced and future directions in this area of research are also summarized.
利用机器学习检测社交媒体用户的抑郁情绪
精神疾病是一个日益严重的公共卫生问题。它们有可能极大地影响一个人的生活。尤其是抑郁症,是自杀的主要原因之一。近年来,社交媒体网站的受欢迎程度迅速增长,因为它们是促进讨论和自由交流的平台,讨论了大量的话题。在各种文化中仍被视为禁忌的心理健康等主题的信息和对话正变得越来越容易获得。本文的目的是回顾和全面比较各种以前使用的自然语言处理技术,目的是将社交媒体文本帖子分类为抑郁症患者所写的帖子。此外,还总结了这些技术的优缺点和评价指标,以及面临的挑战和未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Webology
Webology Social Sciences-Library and Information Sciences
自引率
0.00%
发文量
374
审稿时长
10 weeks
期刊介绍: Webology is an international peer-reviewed journal in English devoted to the field of the World Wide Web and serves as a forum for discussion and experimentation. It serves as a forum for new research in information dissemination and communication processes in general, and in the context of the World Wide Web in particular. Concerns include the production, gathering, recording, processing, storing, representing, sharing, transmitting, retrieving, distribution, and dissemination of information, as well as its social and cultural impacts. There is a strong emphasis on the Web and new information technologies. Special topic issues are also often seen.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信