ENERGY CONCENTRATION PROPERTIES OF A p-GINZBURG–LANDAU MODEL

IF 0.8 2区 数学 Q2 MATHEMATICS
Y. Lei
{"title":"ENERGY CONCENTRATION PROPERTIES OF A p-GINZBURG–LANDAU MODEL","authors":"Y. Lei","doi":"10.1017/nmj.2021.10","DOIUrl":null,"url":null,"abstract":"Abstract This paper is concerned with the p-Ginzburg–Landau (p-GL) type model with \n$p\\neq 2$\n . First, we obtain global energy estimates and energy concentration properties by the singularity analysis. Next, we give a decay rate of \n$1-|u_\\varepsilon |$\n in the domain away from the singularities when \n$\\varepsilon \\to 0$\n , where \n$u_\\varepsilon $\n is a minimizer of p-GL functional with \n$p \\in (1,2)$\n . Finally, we obtain a Liouville theorem for the finite energy solutions of the p-GL equation on \n$\\mathbb {R}^2$\n .","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"247 1","pages":"494 - 515"},"PeriodicalIF":0.8000,"publicationDate":"2021-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2021.10","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper is concerned with the p-Ginzburg–Landau (p-GL) type model with $p\neq 2$ . First, we obtain global energy estimates and energy concentration properties by the singularity analysis. Next, we give a decay rate of $1-|u_\varepsilon |$ in the domain away from the singularities when $\varepsilon \to 0$ , where $u_\varepsilon $ is a minimizer of p-GL functional with $p \in (1,2)$ . Finally, we obtain a Liouville theorem for the finite energy solutions of the p-GL equation on $\mathbb {R}^2$ .
p-GINZBURG-LANDAU模型的能量集中性质
本文研究了p-Ginzburg-Landau (p-GL)型模型的$p\neq 2$。首先,通过奇异性分析得到了整体能量估计和能量集中特性。接下来,我们给出了在远离奇异点的区域中$1-|u_\varepsilon |$的衰减率,当$\varepsilon \to 0$时,其中$u_\varepsilon $是与$p \in (1,2)$的p-GL函数的最小值。最后,我们在$\mathbb {R}^2$上得到了p-GL方程有限能量解的一个Liouville定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
31
审稿时长
6 months
期刊介绍: The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信