{"title":"The Aldous chain on cladograms in the diffusion limit","authors":"Wolfgang Lohr, L. Mytnik, A. Winter","doi":"10.1214/20-AOP1431","DOIUrl":null,"url":null,"abstract":"In [Ald00], Aldous investigates a symmetric Markov chain on cladograms and gives bounds on its mixing and relaxation times. The latter bound was sharpened in [Sch02]. In the present paper we encode cladograms as binary, algebraic measure trees and show that this Markov chain on cladograms with fixed number of leaves converges in distribution as the number of leaves goes to infinity. We give a rigorous construction of the limit, whose existence was conjectured by Aldous and which we therefore refer to as Aldous diffusion, as a solution of a well-posed martingale problem. We show that the Aldous diffusion is a Feller process with continuous paths, and the algebraic measure Brownian CRT is its unique invariant distribution. Furthermore, we consider the vector of the masses of the three subtrees connected to a sampled branch point. In the Brownian CRT, its annealed law is known to be the Dirichlet distribution. Here, we give an explicit expression for the infinitesimal evolution of its quenched law under the Aldous diffusion.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-AOP1431","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 17
Abstract
In [Ald00], Aldous investigates a symmetric Markov chain on cladograms and gives bounds on its mixing and relaxation times. The latter bound was sharpened in [Sch02]. In the present paper we encode cladograms as binary, algebraic measure trees and show that this Markov chain on cladograms with fixed number of leaves converges in distribution as the number of leaves goes to infinity. We give a rigorous construction of the limit, whose existence was conjectured by Aldous and which we therefore refer to as Aldous diffusion, as a solution of a well-posed martingale problem. We show that the Aldous diffusion is a Feller process with continuous paths, and the algebraic measure Brownian CRT is its unique invariant distribution. Furthermore, we consider the vector of the masses of the three subtrees connected to a sampled branch point. In the Brownian CRT, its annealed law is known to be the Dirichlet distribution. Here, we give an explicit expression for the infinitesimal evolution of its quenched law under the Aldous diffusion.
期刊介绍:
The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.