{"title":"Convergence to a diffusive contact wave for solutions to a system of hyperbolic balance laws","authors":"Yanni Zeng","doi":"10.1142/s0219891623500078","DOIUrl":null,"url":null,"abstract":"We consider a [Formula: see text] system of hyperbolic balance laws that is the converted form under inverse Hopf–Cole transformation of a Keller–Segel type chemotaxis model. We study Cauchy problem when Cauchy data connect two different end-states as [Formula: see text]. The background wave is a diffusive contact wave of the reduced system. We establish global existence of solution and study the time asymptotic behavior. In the special case where the cellular population initially approaches its stable equilibrium value as [Formula: see text], we obtain nonlinear stability of the diffusive contact wave under smallness assumption. In the general case where the population initially does not approach to its stable equilibrium value at least at one of the far fields, we use a correction function in the time asymptotic ansatz, and show that the population approaches logistically to its stable equilibrium value. Our result shows two significant differences when comparing to Euler equations with damping. The first one is the existence of a secondary wave in the time asymptotic ansatz. This implies that our solutions converge to the diffusive contact wave slower than those of Euler equations with damping. The second one is that the correction function logistically grows rather than exponentially decays.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hyperbolic Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219891623500078","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
We consider a [Formula: see text] system of hyperbolic balance laws that is the converted form under inverse Hopf–Cole transformation of a Keller–Segel type chemotaxis model. We study Cauchy problem when Cauchy data connect two different end-states as [Formula: see text]. The background wave is a diffusive contact wave of the reduced system. We establish global existence of solution and study the time asymptotic behavior. In the special case where the cellular population initially approaches its stable equilibrium value as [Formula: see text], we obtain nonlinear stability of the diffusive contact wave under smallness assumption. In the general case where the population initially does not approach to its stable equilibrium value at least at one of the far fields, we use a correction function in the time asymptotic ansatz, and show that the population approaches logistically to its stable equilibrium value. Our result shows two significant differences when comparing to Euler equations with damping. The first one is the existence of a secondary wave in the time asymptotic ansatz. This implies that our solutions converge to the diffusive contact wave slower than those of Euler equations with damping. The second one is that the correction function logistically grows rather than exponentially decays.
期刊介绍:
This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in:
Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions.
Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc.
Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations.
Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc.
General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations.
Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.