{"title":"Development of 177Lu-EB-RGD molecular probe and its imaging and therapy in the patient-derived xenografts of non-small cell lung cancer","authors":"Kaili Fu, Liang Zhao, Zhide Guo, Xuejun Wen, Lanlin Yao, Xianzhong Zhang, Xiaoyuan Chen, Q. Lin, Hua Wu, Haojun Chen","doi":"10.3760/CMA.J.CN321828-20190626-00118","DOIUrl":null,"url":null,"abstract":"Objective \nTo develop a novel αvβ3-targeted theranostic agent 177Lu-Evans blue (EB)-Arg-Gly-Asp (RGD) and evaluate its value for SPECT imaging and targeted radionuclide therapy in the non-small cell lung cancer (NSCLC)-patient-derived xenografts (PDX). \n \n \nMethods \nThe αvβ3-targeted molecule RGD was conjugated with the albumin binding moiety EB to obtain EB-RGD, and EB-RGD was further conjugated with the chelator 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid (DOTA) for 177Lu radiolabeling. NSCLC-PDX mice models (n=68) were established. 177Lu-EB-RGD SPECT imaging, biodistribution study were performed in 28 PDX mice models after being injected with 177Lu-EB-RGD or 177Lu-RGD. Targeted radionuclide therapy were subsequently performed in NSCLC-PDX mice models, saline group (group A), 18.5 MBq 177Lu-RGD group (group B), 18.5 MBq 177Lu-EB-RGD group (group C), 29.6 MBq 177Lu-EB-RGD group (group D), n=10 in each group; tumor volumes of PDX mice models in each group were observed within 50 d. Differences between 2 groups were compared using independent-sample t test. \n \n \nResults \n177Lu-EB-RGD was radiolabeled at a specific activity of (55±14) GBq/μmol, with a radiochemical yield of more than 95% and a radiochemical purity of more than 95%. Regarding the SPECT imaging, tumors in NSCLC-PDX mice were clearly observed from 4 to 96 h post-injection and the tumor to muscle ratio (T/M) reached 7.34±0.67, 14.63±3.82, 15.69±3.58 and 15.99±5.42 at 4, 24, 72, 96 h post-injection, respectively. Biodistribution study further confirmed the findings from SPECT imaging, and the tumor uptake of 177Lu-EB-RGD were markedly increased compared to 177Lu-RGD 4 h post-injection ((10.15±1.17) vs (3.30±1.47) percent injection dose per gram (%ID/g); t=18.60, P<0.05). Regarding targeted radiotherapy, the tumor volumes were quickly increased within 50 d after treatment in group A and B, while the tumor volumes were decreased in group C and D, until the tumors in group C and D disappeared at the 28th day after initial treatment with no sign of recurrence during the observation period. \n \n \nConclusions \n177Lu-EB-RGD can target αvβ3-positive NSCLC-PDX with intense tumor to background ratio and strong tumor inhibition efficacy. The preclinical data suggests that 177Lu-EB-RGD may be an effective new treatment option for advanced NSCLC patients with resistance or ineffective results for targeted therapy. \n \n \nKey words: \nCarcinoma, non-small-cell lung; Xenograft model antitumor assays; Evans blue; Arginine-glycine-aspartic acid; Lutetium; Mice, nude","PeriodicalId":10099,"journal":{"name":"中华核医学与分子影像杂志","volume":"40 1","pages":"231-237"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中华核医学与分子影像杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3760/CMA.J.CN321828-20190626-00118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
To develop a novel αvβ3-targeted theranostic agent 177Lu-Evans blue (EB)-Arg-Gly-Asp (RGD) and evaluate its value for SPECT imaging and targeted radionuclide therapy in the non-small cell lung cancer (NSCLC)-patient-derived xenografts (PDX).
Methods
The αvβ3-targeted molecule RGD was conjugated with the albumin binding moiety EB to obtain EB-RGD, and EB-RGD was further conjugated with the chelator 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid (DOTA) for 177Lu radiolabeling. NSCLC-PDX mice models (n=68) were established. 177Lu-EB-RGD SPECT imaging, biodistribution study were performed in 28 PDX mice models after being injected with 177Lu-EB-RGD or 177Lu-RGD. Targeted radionuclide therapy were subsequently performed in NSCLC-PDX mice models, saline group (group A), 18.5 MBq 177Lu-RGD group (group B), 18.5 MBq 177Lu-EB-RGD group (group C), 29.6 MBq 177Lu-EB-RGD group (group D), n=10 in each group; tumor volumes of PDX mice models in each group were observed within 50 d. Differences between 2 groups were compared using independent-sample t test.
Results
177Lu-EB-RGD was radiolabeled at a specific activity of (55±14) GBq/μmol, with a radiochemical yield of more than 95% and a radiochemical purity of more than 95%. Regarding the SPECT imaging, tumors in NSCLC-PDX mice were clearly observed from 4 to 96 h post-injection and the tumor to muscle ratio (T/M) reached 7.34±0.67, 14.63±3.82, 15.69±3.58 and 15.99±5.42 at 4, 24, 72, 96 h post-injection, respectively. Biodistribution study further confirmed the findings from SPECT imaging, and the tumor uptake of 177Lu-EB-RGD were markedly increased compared to 177Lu-RGD 4 h post-injection ((10.15±1.17) vs (3.30±1.47) percent injection dose per gram (%ID/g); t=18.60, P<0.05). Regarding targeted radiotherapy, the tumor volumes were quickly increased within 50 d after treatment in group A and B, while the tumor volumes were decreased in group C and D, until the tumors in group C and D disappeared at the 28th day after initial treatment with no sign of recurrence during the observation period.
Conclusions
177Lu-EB-RGD can target αvβ3-positive NSCLC-PDX with intense tumor to background ratio and strong tumor inhibition efficacy. The preclinical data suggests that 177Lu-EB-RGD may be an effective new treatment option for advanced NSCLC patients with resistance or ineffective results for targeted therapy.
Key words:
Carcinoma, non-small-cell lung; Xenograft model antitumor assays; Evans blue; Arginine-glycine-aspartic acid; Lutetium; Mice, nude
期刊介绍:
Chinese Journal of Nuclear Medicine and Molecular Imaging (CJNMMI) was established in 1981, with the name of Chinese Journal of Nuclear Medicine, and renamed in 2012. As the specialized periodical in the domain of nuclear medicine in China, the aim of Chinese Journal of Nuclear Medicine and Molecular Imaging is to develop nuclear medicine sciences, push forward nuclear medicine education and basic construction, foster qualified personnel training and academic exchanges, and popularize related knowledge and raising public awareness.
Topics of interest for Chinese Journal of Nuclear Medicine and Molecular Imaging include:
-Research and commentary on nuclear medicine and molecular imaging with significant implications for disease diagnosis and treatment
-Investigative studies of heart, brain imaging and tumor positioning
-Perspectives and reviews on research topics that discuss the implications of findings from the basic science and clinical practice of nuclear medicine and molecular imaging
- Nuclear medicine education and personnel training
- Topics of interest for nuclear medicine and molecular imaging include subject coverage diseases such as cardiovascular diseases, cancer, Alzheimer’s disease, and Parkinson’s disease, and also radionuclide therapy, radiomics, molecular probes and related translational research.