Lin Chai, Jian Liu, Guanrong Chen, Xiaotong Zhang, Yiqun Li
{"title":"AMPLITUDE CONTROL AND CHAOTIC SYNCHRONIZATION OF A COMPLEX-VALUED LASER RING NETWORK","authors":"Lin Chai, Jian Liu, Guanrong Chen, Xiaotong Zhang, Yiqun Li","doi":"10.1142/s0218348x23500913","DOIUrl":null,"url":null,"abstract":"Many real-world systems are connected together, in natural and man-made networks. A complex-valued laser network can simulate the working mechanism of human brain. However, amplitude control of a complex-valued laser network is seldom studied. In this paper, a ring network of complex-valued Lorenz laser systems is investigated. The ring network exhibits complex dynamics including hyper-chaos, quasi-periodic orbits, and coexisting hyper-chaos. Three kinds of single-parameter oriented amplitude controls are realized with varying or unvarying Lyapunov exponents in the ring network. Meanwhile, a simple knob can realize the amplitude rescaling of hyper-chaotic signals, which reduces the cost of circuit implementation. Moreover, a criterion of chaotic complete synchronization among all the nodes is established for a network with strong coupling. For relatively weak coupling, quasi-periodic complete synchronization is found, and the performance of chaotic synchronization is studied in terms of the cross-correlation coefficient. It is moreover revealed that the improvement and trend of synchronization performance are robust to the parity of the number of nodes for the same-scale laser networks.","PeriodicalId":55144,"journal":{"name":"Fractals-Complex Geometry Patterns and Scaling in Nature and Society","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals-Complex Geometry Patterns and Scaling in Nature and Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218348x23500913","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Many real-world systems are connected together, in natural and man-made networks. A complex-valued laser network can simulate the working mechanism of human brain. However, amplitude control of a complex-valued laser network is seldom studied. In this paper, a ring network of complex-valued Lorenz laser systems is investigated. The ring network exhibits complex dynamics including hyper-chaos, quasi-periodic orbits, and coexisting hyper-chaos. Three kinds of single-parameter oriented amplitude controls are realized with varying or unvarying Lyapunov exponents in the ring network. Meanwhile, a simple knob can realize the amplitude rescaling of hyper-chaotic signals, which reduces the cost of circuit implementation. Moreover, a criterion of chaotic complete synchronization among all the nodes is established for a network with strong coupling. For relatively weak coupling, quasi-periodic complete synchronization is found, and the performance of chaotic synchronization is studied in terms of the cross-correlation coefficient. It is moreover revealed that the improvement and trend of synchronization performance are robust to the parity of the number of nodes for the same-scale laser networks.
期刊介绍:
The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development and applications in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, engineering and technology, and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes.
Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality.
The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.