{"title":"In‐plane stability and shear deformation analysis of the H‐beam hollow arch","authors":"Xuejie Liu, Tong Xiao","doi":"10.1002/tal.2009","DOIUrl":null,"url":null,"abstract":"H‐shaped circular arc is a relatively novel type of open‐web steel arch, and currently, no reports have been published concerning its in‐plane stability. In this paper, the elastic and elastic–plastic in‐plane stability of the H‐shaped hollow circular arch is studied by theoretical deduction combined with numerical simulation. First, the overall shear rigidity of the H‐shaped circular arch is calculated, and the elastic buckling load formula of the arch is proposed and verified considering double shear deformation under full‐span radial and uniform loading. The overall elastic buckling load deduced in this paper is reasonable according to the finite element analysis. The results indicate that the influence of shear deformation on the overall elastic buckling load of the arch decreases with the increase of the span length. The arch‐bearing capacity is the largest when the rise‐span ratio is 0.25. Second, the restriction conditions necessary for avoiding local buckling of the chordal web before integral buckling of the H‐shaped steel hollow circular arch are analyzed. Finally, the elastic–plastic failure mechanism of the H‐shaped arch under full‐span radial and uniform loading is examined, and the formula for determining the ultimate bearing capacity that is achievable before failure under full‐span radial and uniform loading is proposed. ANSYS analysis shows that under the radial uniform loading, the chordal bars will yield near 1/4L and 3/4L, and ultimately, the structural failure of the lower chord occurs in the vicinity of 1/4L. The formulas presented in this paper agree well with the results obtained from the finite element analysis and can be used as a reference for engineering applications.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Design of Tall and Special Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/tal.2009","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
H‐shaped circular arc is a relatively novel type of open‐web steel arch, and currently, no reports have been published concerning its in‐plane stability. In this paper, the elastic and elastic–plastic in‐plane stability of the H‐shaped hollow circular arch is studied by theoretical deduction combined with numerical simulation. First, the overall shear rigidity of the H‐shaped circular arch is calculated, and the elastic buckling load formula of the arch is proposed and verified considering double shear deformation under full‐span radial and uniform loading. The overall elastic buckling load deduced in this paper is reasonable according to the finite element analysis. The results indicate that the influence of shear deformation on the overall elastic buckling load of the arch decreases with the increase of the span length. The arch‐bearing capacity is the largest when the rise‐span ratio is 0.25. Second, the restriction conditions necessary for avoiding local buckling of the chordal web before integral buckling of the H‐shaped steel hollow circular arch are analyzed. Finally, the elastic–plastic failure mechanism of the H‐shaped arch under full‐span radial and uniform loading is examined, and the formula for determining the ultimate bearing capacity that is achievable before failure under full‐span radial and uniform loading is proposed. ANSYS analysis shows that under the radial uniform loading, the chordal bars will yield near 1/4L and 3/4L, and ultimately, the structural failure of the lower chord occurs in the vicinity of 1/4L. The formulas presented in this paper agree well with the results obtained from the finite element analysis and can be used as a reference for engineering applications.
期刊介绍:
The Structural Design of Tall and Special Buildings provides structural engineers and contractors with a detailed written presentation of innovative structural engineering and construction practices for tall and special buildings. It also presents applied research on new materials or analysis methods that can directly benefit structural engineers involved in the design of tall and special buildings. The editor''s policy is to maintain a reasonable balance between papers from design engineers and from research workers so that the Journal will be useful to both groups. The problems in this field and their solutions are international in character and require a knowledge of several traditional disciplines and the Journal will reflect this.
The main subject of the Journal is the structural design and construction of tall and special buildings. The basic definition of a tall building, in the context of the Journal audience, is a structure that is equal to or greater than 50 meters (165 feet) in height, or 14 stories or greater. A special building is one with unique architectural or structural characteristics.
However, manuscripts dealing with chimneys, water towers, silos, cooling towers, and pools will generally not be considered for review. The journal will present papers on new innovative structural systems, materials and methods of analysis.