On the Radon-Nikodym Property for Vector Measures and Extensions of Transfunctions

IF 0.4 Q4 MATHEMATICS
P. Mikusinski, J. P. Ward
{"title":"On the Radon-Nikodym Property for Vector Measures and Extensions of Transfunctions","authors":"P. Mikusinski, J. P. Ward","doi":"10.2478/amsil-2020-0022","DOIUrl":null,"url":null,"abstract":"Abstract If (μn)n=1∞\\left( {{\\mu _n}} \\right)_{n = 1}^\\infty are positive measures on a measurable space (X, Σ) and (vn)n=1∞\\left( {{v_n}} \\right)_{n = 1}^\\infty are elements of a Banach space 𝔼 such that ∑n=1∞‖vn‖μn(X)<∞\\sum\\nolimits_{n = 1}^\\infty {\\left\\| {{v_n}} \\right\\|{\\mu _n}\\left( X \\right)} < \\infty, then ω(S)=∑n=1∞vnμn(S)\\omega \\left( S \\right) = \\sum\\nolimits_{n = 1}^\\infty {{v_n}{\\mu _n}\\left( S \\right)} defines a vector measure of bounded variation on (X, Σ). We show 𝔼 has the Radon-Nikodym property if and only if every 𝔼-valued measure of bounded variation on (X, Σ) is of this form. This characterization of the Radon-Nikodym property leads to a new proof of the Lewis-Stegall theorem. We also use this result to show that under natural conditions an operator defined on positive measures has a unique extension to an operator defined on 𝔼-valued measures for any Banach space 𝔼 that has the Radon-Nikodym property.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"35 1","pages":"77 - 89"},"PeriodicalIF":0.4000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2020-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract If (μn)n=1∞\left( {{\mu _n}} \right)_{n = 1}^\infty are positive measures on a measurable space (X, Σ) and (vn)n=1∞\left( {{v_n}} \right)_{n = 1}^\infty are elements of a Banach space 𝔼 such that ∑n=1∞‖vn‖μn(X)<∞\sum\nolimits_{n = 1}^\infty {\left\| {{v_n}} \right\|{\mu _n}\left( X \right)} < \infty, then ω(S)=∑n=1∞vnμn(S)\omega \left( S \right) = \sum\nolimits_{n = 1}^\infty {{v_n}{\mu _n}\left( S \right)} defines a vector measure of bounded variation on (X, Σ). We show 𝔼 has the Radon-Nikodym property if and only if every 𝔼-valued measure of bounded variation on (X, Σ) is of this form. This characterization of the Radon-Nikodym property leads to a new proof of the Lewis-Stegall theorem. We also use this result to show that under natural conditions an operator defined on positive measures has a unique extension to an operator defined on 𝔼-valued measures for any Banach space 𝔼 that has the Radon-Nikodym property.
泛函数向量测度与扩展的Radon-Nikodym性质
摘要If (μn)n=1∞\left( {{\mu _n}} \right){N = 1}^\infty 在可测空间(X, Σ)和(vn)n=1∞上是否有正测度\left( {{v_n}} \right){N = 1}^\infty Banach空间中的元素是否使得∑n=1∞‖vn‖μn(X)<∞\sum\nolimits_{N = 1}^\infty {\left\ b| {{v_n}} \right\ b|{\mu _n}\left(x) \right)} < \infty,则ω(S)=∑n=1∞vnμn(S)\omega \left(5) \right) = \sum\nolimits_{N = 1}^\infty {{v_n}{\mu _n}\left(5) \right)} 定义(X, Σ)上有界变化的矢量度量。我们证明,当且仅当(X, Σ)上的有界变化的每个𝔼-valued度量都是这种形式时,具有Radon-Nikodym性质。Radon-Nikodym性质的这种表征导致了Lewis-Stegall定理的一个新的证明。我们也用这个结果证明了在自然条件下,对于任何具有Radon-Nikodym性质的Banach空间,定义在正测度上的算子对定义在𝔼-valued测度上的算子有唯一的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信