Linguistically Informed Post-processing for ASR Error correction in Sanskrit

Rishabh Kumar, D. Adiga, R. Ranjan, A. Krishna, Ganesh Ramakrishnan, Pawan Goyal, P. Jyothi
{"title":"Linguistically Informed Post-processing for ASR Error correction in Sanskrit","authors":"Rishabh Kumar, D. Adiga, R. Ranjan, A. Krishna, Ganesh Ramakrishnan, Pawan Goyal, P. Jyothi","doi":"10.21437/interspeech.2022-11189","DOIUrl":null,"url":null,"abstract":"We propose an ASR system for Sanskrit, a low-resource language, that effectively combines subword tokenisation strategies and search space enrichment with linguistic information. More specifically, to address the challenges due to the high degree of out-of-vocabulary entries present in the language, we first use a subword-based language model and acoustic model to generate a search space. The search space, so obtained, is converted into a word-based search space and is further enriched with morphological and lexical information based on a shallow parser. Finally, the transitions in the search space are rescored using a supervised morphological parser proposed for Sanskrit. Our proposed approach currently reports the state-of-the-art results in Sanskrit ASR, with a 7.18 absolute point reduction in WER than the previous state-of-the-art.","PeriodicalId":73500,"journal":{"name":"Interspeech","volume":"1 1","pages":"2293-2297"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interspeech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/interspeech.2022-11189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose an ASR system for Sanskrit, a low-resource language, that effectively combines subword tokenisation strategies and search space enrichment with linguistic information. More specifically, to address the challenges due to the high degree of out-of-vocabulary entries present in the language, we first use a subword-based language model and acoustic model to generate a search space. The search space, so obtained, is converted into a word-based search space and is further enriched with morphological and lexical information based on a shallow parser. Finally, the transitions in the search space are rescored using a supervised morphological parser proposed for Sanskrit. Our proposed approach currently reports the state-of-the-art results in Sanskrit ASR, with a 7.18 absolute point reduction in WER than the previous state-of-the-art.
梵文ASR纠错的语言信息后处理
我们提出了一种针对低资源语言梵语的ASR系统,该系统有效地将子词标记化策略和搜索空间丰富与语言信息相结合。更具体地说,为了解决语言中存在大量词汇外条目所带来的挑战,我们首先使用基于子词的语言模型和声学模型来生成搜索空间。这样获得的搜索空间被转换为基于单词的搜索空间,并使用基于浅解析器的形态和词汇信息进一步丰富搜索空间。最后,使用为梵语提出的有监督的形态学解析器重新定位搜索空间中的转换。我们提出的方法目前在梵语ASR中报告了最先进的结果,比以前的最先进的WER降低了7.18个绝对点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信