{"title":"Nonparametric estimation of additive models with errors-in-variables","authors":"Hao Dong, Taisuke Otsu, L. Taylor","doi":"10.1080/07474938.2022.2127076","DOIUrl":null,"url":null,"abstract":"Abstract In the estimation of nonparametric additive models, conventional methods, such as backfitting and series approximation, cannot be applied when measurement error is present in a covariate. This paper proposes a two-stage estimator for such models. In the first stage, to adapt to the additive structure, we use a series approximation together with a ridge approach to deal with the ill-posedness brought by mismeasurement. We derive the uniform convergence rate of this first-stage estimator and characterize how the measurement error slows down the convergence rate for ordinary/super smooth cases. To establish the limiting distribution, we construct a second-stage estimator via one-step backfitting with a deconvolution kernel using the first-stage estimator. The asymptotic normality of the second-stage estimator is established for ordinary/super smooth measurement error cases. Finally, a Monte Carlo study and an empirical application highlight the applicability of the estimator.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"41 1","pages":"1164 - 1204"},"PeriodicalIF":0.8000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2022.2127076","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract In the estimation of nonparametric additive models, conventional methods, such as backfitting and series approximation, cannot be applied when measurement error is present in a covariate. This paper proposes a two-stage estimator for such models. In the first stage, to adapt to the additive structure, we use a series approximation together with a ridge approach to deal with the ill-posedness brought by mismeasurement. We derive the uniform convergence rate of this first-stage estimator and characterize how the measurement error slows down the convergence rate for ordinary/super smooth cases. To establish the limiting distribution, we construct a second-stage estimator via one-step backfitting with a deconvolution kernel using the first-stage estimator. The asymptotic normality of the second-stage estimator is established for ordinary/super smooth measurement error cases. Finally, a Monte Carlo study and an empirical application highlight the applicability of the estimator.
期刊介绍:
Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.