Finite-time adaptive synchronization of fractional-order delayed quaternion-valued fuzzy neural networks

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Shenglong Chen, Hongli Li, Leimin Wang, Cheng Hu, Haijun Jiang, Zhiming Li
{"title":"Finite-time adaptive synchronization of fractional-order delayed quaternion-valued fuzzy neural networks","authors":"Shenglong Chen, Hongli Li, Leimin Wang, Cheng Hu, Haijun Jiang, Zhiming Li","doi":"10.15388/namc.2023.28.32505","DOIUrl":null,"url":null,"abstract":"Based on direct quaternion method, this paper explores the finite-time adaptive synchronization (FAS) of fractional-order delayed quaternion-valued fuzzy neural networks (FODQVFNNs). Firstly, a useful fractional differential inequality is created, which offers an effective way to investigate FAS. Then two novel quaternion-valued adaptive control strategies are designed. By means of our newly proposed inequality, the basic knowledge about fractional calculus, reduction to absurdity as well as several inequality techniques of quaternion and fuzzy logic, several sufficient FAS criteria are derived for FODQVFNNs. Moreover, the settling time of FAS is estimated, which is in connection with the order and initial values of considered systems as well as the controller parameters. Ultimately, the validity of obtained FAS criteria is corroborated by numerical simulations.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2023.28.32505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 3

Abstract

Based on direct quaternion method, this paper explores the finite-time adaptive synchronization (FAS) of fractional-order delayed quaternion-valued fuzzy neural networks (FODQVFNNs). Firstly, a useful fractional differential inequality is created, which offers an effective way to investigate FAS. Then two novel quaternion-valued adaptive control strategies are designed. By means of our newly proposed inequality, the basic knowledge about fractional calculus, reduction to absurdity as well as several inequality techniques of quaternion and fuzzy logic, several sufficient FAS criteria are derived for FODQVFNNs. Moreover, the settling time of FAS is estimated, which is in connection with the order and initial values of considered systems as well as the controller parameters. Ultimately, the validity of obtained FAS criteria is corroborated by numerical simulations.
分数阶延迟四元数值模糊神经网络的有限时间自适应同步
基于直接四元数方法,研究了分数阶延迟四元数值模糊神经网络的有限时间自适应同步问题。首先,建立了一个有用的分数阶微分不等式,为研究FAS提供了一种有效的方法。然后设计了两种新颖的四元数值自适应控制策略。利用我们新提出的不等式,分数阶微积分的基本知识,归约到荒谬性,以及四元数和模糊逻辑的几种不等式技术,导出了FODQVFNN的几个充分的FAS准则。此外,还估计了FAS的稳定时间,该时间与所考虑系统的阶数和初始值以及控制器参数有关。最后,通过数值模拟验证了所获得的FAS准则的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信