Radio-Frequency Interference at the McGill Arctic Research Station

IF 1.5 Q3 ASTRONOMY & ASTROPHYSICS
T. Dyson, H. Chiang, E. Egan, N. Ghazi, T. Menard, R. Monsalve, T. Moso, J. Peterson, J. Sievers, S. Tartakovsky
{"title":"Radio-Frequency Interference at the McGill Arctic Research Station","authors":"T. Dyson, H. Chiang, E. Egan, N. Ghazi, T. Menard, R. Monsalve, T. Moso, J. Peterson, J. Sievers, S. Tartakovsky","doi":"10.1142/S2251171721500070","DOIUrl":null,"url":null,"abstract":"The frequencies of interest for redshifted 21[Formula: see text]cm observations are heavily affected by terrestrial radio-frequency interference (RFI). We identify the McGill Arctic Research Station (MARS) as a new RFI-quiet site and report its RFI occupancy using 122[Formula: see text]h of data taken with a prototype antenna station developed for the Array of Long-Baseline Antennas for Taking Radio Observations from the Sub-Antarctic. Using an RFI flagging process tailored to the MARS data, we find an overall RFI occupancy of 1.8% averaged over 20–125[Formula: see text]MHz. In particular, the FM broadcast band (88–108[Formula: see text]MHz) is found to have an RFI occupancy of at most 1.6%. The data were taken during the Arctic summer, when degraded ionospheric conditions and an active research base contributed to increased RFI. The results quoted here therefore represent the maximum-level RFI environment at MARS.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2251171721500070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The frequencies of interest for redshifted 21[Formula: see text]cm observations are heavily affected by terrestrial radio-frequency interference (RFI). We identify the McGill Arctic Research Station (MARS) as a new RFI-quiet site and report its RFI occupancy using 122[Formula: see text]h of data taken with a prototype antenna station developed for the Array of Long-Baseline Antennas for Taking Radio Observations from the Sub-Antarctic. Using an RFI flagging process tailored to the MARS data, we find an overall RFI occupancy of 1.8% averaged over 20–125[Formula: see text]MHz. In particular, the FM broadcast band (88–108[Formula: see text]MHz) is found to have an RFI occupancy of at most 1.6%. The data were taken during the Arctic summer, when degraded ionospheric conditions and an active research base contributed to increased RFI. The results quoted here therefore represent the maximum-level RFI environment at MARS.
麦吉尔北极研究站的射频干扰
红移21[公式:见正文]cm观测的感兴趣频率受到地面射频干扰(RFI)的严重影响。我们将麦吉尔北极研究站(MARS)确定为一个新的RFI安静站点,并使用122[公式:见正文]h的原型天线站数据报告其RFI占用情况,该原型天线站是为从亚南极进行无线电观测的长基线天线阵列开发的。使用根据MARS数据定制的RFI标记过程,我们发现在20–125[公式:见正文]MHz期间,RFI的总体占用率平均为1.8%。特别是,FM广播频带(88–108[公式:见正文]MHz)的RFI占用率最高为1.6%。这些数据是在北极夏季采集的,当时电离层条件退化和活跃的研究基地导致RFI增加。因此,此处引用的结果代表MARS的最大水平RFI环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Astronomical Instrumentation
Journal of Astronomical Instrumentation ASTRONOMY & ASTROPHYSICS-
CiteScore
2.30
自引率
7.70%
发文量
19
期刊介绍: The Journal of Astronomical Instrumentation (JAI) publishes papers describing instruments and components being proposed, developed, under construction and in use. JAI also publishes papers that describe facility operations, lessons learned in design, construction, and operation, algorithms and their implementations, and techniques, including calibration, that are fundamental elements of instrumentation. The journal focuses on astronomical instrumentation topics in all wavebands (Radio to Gamma-Ray) and includes the disciplines of Heliophysics, Space Weather, Lunar and Planetary Science, Exoplanet Exploration, and Astroparticle Observation (cosmic rays, cosmic neutrinos, etc.). Concepts, designs, components, algorithms, integrated systems, operations, data archiving techniques and lessons learned applicable but not limited to the following platforms are pertinent to this journal. Example topics are listed below each platform, and it is recognized that many of these topics are relevant to multiple platforms. Relevant platforms include: Ground-based observatories[...] Stratospheric aircraft[...] Balloons and suborbital rockets[...] Space-based observatories and systems[...] Landers and rovers, and other planetary-based instrument concepts[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信