{"title":"Further results on q-Lie groups, q-Lie algebras and q-homogeneous spaces","authors":"T. Ernst","doi":"10.1515/spma-2020-0129","DOIUrl":null,"url":null,"abstract":"Abstract We introduce most of the concepts for q-Lie algebras in a way independent of the base field K. Again it turns out that we can keep the same Lie algebra with a small modification. We use very similar definitions for all quantities, which means that the proofs are similar. In particular, the quantities solvable, nilpotent, semisimple q-Lie algebra, Weyl group and Weyl chamber are identical with the ordinary case q = 1. The computations of sample q-roots for certain well-known q-Lie groups contain an extra q-addition, and consequently, for most of the quantities which are q-deformed, we add a prefix q in the respective name. Important examples are the q-Cartan subalgebra and the q-Cartan Killing form. We introduce the concept q-homogeneous spaces in a formal way exemplified by the examples SUq(1,1)SOq(2){{S{U_q}\\left( {1,1} \\right)} \\over {S{O_q}\\left( 2 \\right)}} and SOq(3)SOq(2){{S{O_q}\\left( 3 \\right)} \\over {S{O_q}\\left( 2 \\right)}} with corresponding q-Lie groups and q-geodesics. By introducing a q-deformed semidirect product, we can define exact sequences of q-Lie groups and some other interesting q-homogeneous spaces. We give an example of the corresponding q-Iwasawa decomposition for SLq(2).","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"9 1","pages":"119 - 148"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/spma-2020-0129","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2020-0129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We introduce most of the concepts for q-Lie algebras in a way independent of the base field K. Again it turns out that we can keep the same Lie algebra with a small modification. We use very similar definitions for all quantities, which means that the proofs are similar. In particular, the quantities solvable, nilpotent, semisimple q-Lie algebra, Weyl group and Weyl chamber are identical with the ordinary case q = 1. The computations of sample q-roots for certain well-known q-Lie groups contain an extra q-addition, and consequently, for most of the quantities which are q-deformed, we add a prefix q in the respective name. Important examples are the q-Cartan subalgebra and the q-Cartan Killing form. We introduce the concept q-homogeneous spaces in a formal way exemplified by the examples SUq(1,1)SOq(2){{S{U_q}\left( {1,1} \right)} \over {S{O_q}\left( 2 \right)}} and SOq(3)SOq(2){{S{O_q}\left( 3 \right)} \over {S{O_q}\left( 2 \right)}} with corresponding q-Lie groups and q-geodesics. By introducing a q-deformed semidirect product, we can define exact sequences of q-Lie groups and some other interesting q-homogeneous spaces. We give an example of the corresponding q-Iwasawa decomposition for SLq(2).
期刊介绍:
Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.