Blow-up for logarithmic viscoelastic equations with delay and acoustic boundary conditions

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Sun‐Hye Park
{"title":"Blow-up for logarithmic viscoelastic equations with delay and acoustic boundary conditions","authors":"Sun‐Hye Park","doi":"10.1515/anona-2022-0310","DOIUrl":null,"url":null,"abstract":"Abstract In the present work, we establish a blow-up criterion for viscoelastic wave equations with nonlinear damping, logarithmic source, delay in the velocity, and acoustic boundary conditions. Due to the nonlinear damping term, we cannot apply the concavity method introduced by Levine. Thus, we use the energy method to show that the solution with negative initial energy blows up after finite time. Furthermore, we investigate the upper and lower bounds of the blow-up time.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0310","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract In the present work, we establish a blow-up criterion for viscoelastic wave equations with nonlinear damping, logarithmic source, delay in the velocity, and acoustic boundary conditions. Due to the nonlinear damping term, we cannot apply the concavity method introduced by Levine. Thus, we use the energy method to show that the solution with negative initial energy blows up after finite time. Furthermore, we investigate the upper and lower bounds of the blow-up time.
具有时滞和声学边界条件的对数粘弹性方程的Blow-up
摘要在本文中,我们建立了具有非线性阻尼、对数源、速度延迟和声学边界条件的粘弹性波动方程的爆破准则。由于阻尼项的非线性,我们不能应用Levine提出的凹度方法。因此,我们用能量法证明了具有负初始能量的解在有限时间后爆炸。此外,我们还研究了爆破时间的上限和下限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信